On efficiently storing huge property graphs in relational database management systems

Matthias Schmid
{"title":"On efficiently storing huge property graphs in relational database management systems","authors":"Matthias Schmid","doi":"10.1145/3366030.3366046","DOIUrl":null,"url":null,"abstract":"Graph structured data can be found in an increasing amount of use-cases. While there exists a considerable number of solutions to store graphs in NoSQL databases, the combined storage of relationally stored data with huge graph structured data within the same relational database system is not well researched. We present a relational approach for storing and querying huge property graphs by combining NoSQL features, provided by nearly any state-of-the-art database system, and an adjacency table approach. Our approach is optimized for read-only queries but also performs well on update queries. Through an empirical evaluation we show that we achieve a 10 times higher throughput than previous works on a graph with up to 650 million edges. This way, we can use all the advantages of full-fledged relational database systems and seamlessly integrate classical relational data with graph-structured data in an efficient way.","PeriodicalId":446280,"journal":{"name":"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366030.3366046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Graph structured data can be found in an increasing amount of use-cases. While there exists a considerable number of solutions to store graphs in NoSQL databases, the combined storage of relationally stored data with huge graph structured data within the same relational database system is not well researched. We present a relational approach for storing and querying huge property graphs by combining NoSQL features, provided by nearly any state-of-the-art database system, and an adjacency table approach. Our approach is optimized for read-only queries but also performs well on update queries. Through an empirical evaluation we show that we achieve a 10 times higher throughput than previous works on a graph with up to 650 million edges. This way, we can use all the advantages of full-fledged relational database systems and seamlessly integrate classical relational data with graph-structured data in an efficient way.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关系数据库管理系统中海量属性图的高效存储
图结构数据可以在越来越多的用例中找到。虽然在NoSQL数据库中存储图的解决方案已经相当多,但是在同一关系数据库系统中,将关系存储数据与庞大的图结构化数据组合存储还没有得到很好的研究。我们提出了一种存储和查询大型属性图的关系方法,该方法结合了几乎所有最先进的数据库系统提供的NoSQL特性和邻接表方法。我们的方法针对只读查询进行了优化,但在更新查询方面也表现良好。通过经验评估,我们表明我们在具有多达6.5亿个边的图上实现了比以前工作高10倍的吞吐量。这样,我们就可以利用成熟的关系数据库系统的所有优点,并以一种高效的方式将经典关系数据与图结构数据无缝集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Crawling Method with No Parameters for Geo-social Data based on Road Maps PLDSD Fake News Classification Based on Subjective Language Computing Ranges for Temporal Parameters of Composed Web Services Microbiological Water Quality Test Results Extraction from Mobile Photographs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1