Spatio-temporal analysis using tensors

H. Knutsson, G. Granlund
{"title":"Spatio-temporal analysis using tensors","authors":"H. Knutsson, G. Granlund","doi":"10.1109/MDSP.1989.96989","DOIUrl":null,"url":null,"abstract":"Summary form only given. A fundamental issue in the problem of finding an efficient algorithm for estimation of 3D orientation is how 3D orientation should be represented. A representation is regarded as suitable if it meets the three basic requirements of uniqueness, uniformity, and polar separability. A tensor representation suitable in the above sense has been obtained. The uniqueness requirement implies a mapping that maps all pairs of 3D vectors x and -x onto the same tensor T. Uniformity implies that the mapping implicitly carries a definition of distance between 3D planes (and lines) that is rotation invariant and monotone with the angle between the planes. Polar separability means that the norm of the representing tensor T is rotation invariant. One way to describe the mapping is that it maps a 3D sphere into 6D in such a way that the surface is uniformly stretched and all pairs of antipodal points map onto the same tensor. It has been demonstrated that the above mapping can be implemented by sampling the 3D space using a specific class of symmetrically distributed quadrature filters.<<ETX>>","PeriodicalId":340681,"journal":{"name":"Sixth Multidimensional Signal Processing Workshop,","volume":"507 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth Multidimensional Signal Processing Workshop,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDSP.1989.96989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Summary form only given. A fundamental issue in the problem of finding an efficient algorithm for estimation of 3D orientation is how 3D orientation should be represented. A representation is regarded as suitable if it meets the three basic requirements of uniqueness, uniformity, and polar separability. A tensor representation suitable in the above sense has been obtained. The uniqueness requirement implies a mapping that maps all pairs of 3D vectors x and -x onto the same tensor T. Uniformity implies that the mapping implicitly carries a definition of distance between 3D planes (and lines) that is rotation invariant and monotone with the angle between the planes. Polar separability means that the norm of the representing tensor T is rotation invariant. One way to describe the mapping is that it maps a 3D sphere into 6D in such a way that the surface is uniformly stretched and all pairs of antipodal points map onto the same tensor. It has been demonstrated that the above mapping can be implemented by sampling the 3D space using a specific class of symmetrically distributed quadrature filters.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用张量的时空分析
只提供摘要形式。在寻找一种有效的三维方向估计算法的问题中,一个基本问题是三维方向应该如何表示。一种表示如果满足唯一性、均匀性和极可分性三个基本要求,就被认为是合适的。得到了一个适用于上述意义的张量表示。唯一性要求意味着将所有对3D向量x和-x映射到同一个张量t上的映射。均匀性意味着映射隐含地带有3D平面(和线)之间距离的定义,该定义是旋转不变的,并且与平面之间的角度单调。极可分性意味着表示张量T的范数是旋转不变的。描述映射的一种方法是,它将一个3D球体映射到6D中,以这样一种方式,表面被均匀拉伸,所有对映点对映到同一个张量上。已经证明,上述映射可以通过使用一类特定的对称分布正交滤波器对三维空间进行采样来实现
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A filtering approach to the two-dimensional volume conductor forward and inverse problems A cross-correlation approach to astronomical speckle imaging A new robust method for 2-D sinusoidal frequency estimation Fast progressive reconstruction of a transformed image by the Hartley method Adaptive filter for processing of multichannel nonstationary seismic data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1