Structure determination of artificial neural network using modified cellular encoding

A. Alim, G. Rabbani, M. M. Azad
{"title":"Structure determination of artificial neural network using modified cellular encoding","authors":"A. Alim, G. Rabbani, M. M. Azad","doi":"10.1109/ICCITECHN.2007.4579425","DOIUrl":null,"url":null,"abstract":"This paper works with a new evolutionary system to construct and control the structure of feed forward artificial neural networks (ANNs), represented by modified cellular encoding (MCE) that is not subject to the well-known permutation problem. It is shown in this paper that addition or deletion of nodes or connections can evidently be done by crossover automatically. Hence, the number of user specified parameter is also decreased. The ANN architecture determination algorithm is tested on some real world problems. The algorithm is made adaptive.","PeriodicalId":338170,"journal":{"name":"2007 10th international conference on computer and information technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th international conference on computer and information technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2007.4579425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper works with a new evolutionary system to construct and control the structure of feed forward artificial neural networks (ANNs), represented by modified cellular encoding (MCE) that is not subject to the well-known permutation problem. It is shown in this paper that addition or deletion of nodes or connections can evidently be done by crossover automatically. Hence, the number of user specified parameter is also decreased. The ANN architecture determination algorithm is tested on some real world problems. The algorithm is made adaptive.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进元胞编码的人工神经网络结构确定
本文使用一种新的进化系统来构建和控制前馈人工神经网络(ann)的结构,该网络以改进的细胞编码(MCE)为代表,不受众所周知的排列问题的约束。本文表明,节点或连接的添加或删除明显可以通过交叉自动完成。因此,用户指定参数的数量也减少了。在一些实际问题上对人工神经网络体系结构确定算法进行了测试。该算法是自适应的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiple description image transmission for diversity systems over unreliable communication networks Synthesis of incompletely specified multi-output quaternary function using quaternary quantum gates Building a foundation of HPSG-based treebank on Bangla language Advances in focused retrieval: A general review WebELS e-learning system: Online and offline viewing of audio and cursor syncronised slides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1