One-Bit Quantized Constructive Interference Based Precoding for Massive Multiuser MIMO Downlink

Alireza Haqiqatnejad, F. Kayhan, S. Shahbazpanahi, B. Ottersten
{"title":"One-Bit Quantized Constructive Interference Based Precoding for Massive Multiuser MIMO Downlink","authors":"Alireza Haqiqatnejad, F. Kayhan, S. Shahbazpanahi, B. Ottersten","doi":"10.1109/ICC40277.2020.9148679","DOIUrl":null,"url":null,"abstract":"We propose a one-bit symbol-level precoding method for massive multiuser multiple-input multiple-output (MU-MIMO) downlink systems using the idea of constructive interference (CI). In particular, we adopt a max-min fair design criterion which aims to maximize the minimum instantaneous received signal-to-noise ratio (SNR) among the user equipments (UEs), while ensuring a CI constraint for each UE and under the restriction that the output of the precoder is a vector of binary elements. This design problem is an NP-hard binary quadratic programming due to the one-bit constraints on the elements of the precoder’s output vector, and hence, is difficult to solve. In this paper, we tackle this difficulty by reformulating the problem, in several steps, into an equivalent continuous-domain biconvex form. Our final biconvex reformulation is obtained via an exact penalty approach and can efficiently be solved using a standard block coordinate ascent algorithm. We show through simulation results that the proposed design outperforms the existing schemes in terms of (uncoded) bit error rate. It is further shown via numerical analysis that our solution algorithm is computationally-efficient as it needs only a few tens of iterations to converge in most practical scenarios.","PeriodicalId":106560,"journal":{"name":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC40277.2020.9148679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a one-bit symbol-level precoding method for massive multiuser multiple-input multiple-output (MU-MIMO) downlink systems using the idea of constructive interference (CI). In particular, we adopt a max-min fair design criterion which aims to maximize the minimum instantaneous received signal-to-noise ratio (SNR) among the user equipments (UEs), while ensuring a CI constraint for each UE and under the restriction that the output of the precoder is a vector of binary elements. This design problem is an NP-hard binary quadratic programming due to the one-bit constraints on the elements of the precoder’s output vector, and hence, is difficult to solve. In this paper, we tackle this difficulty by reformulating the problem, in several steps, into an equivalent continuous-domain biconvex form. Our final biconvex reformulation is obtained via an exact penalty approach and can efficiently be solved using a standard block coordinate ascent algorithm. We show through simulation results that the proposed design outperforms the existing schemes in terms of (uncoded) bit error rate. It is further shown via numerical analysis that our solution algorithm is computationally-efficient as it needs only a few tens of iterations to converge in most practical scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模多用户MIMO下行链路中基于1位量化建设性干扰的预编码
我们提出了一种用于大规模多用户多输入多输出(MU-MIMO)下行链路系统的位符号级预编码方法。特别是,我们采用了最大最小公平设计准则,旨在最大化用户设备(UE)之间的最小瞬时接收信噪比(SNR),同时确保每个UE都有CI约束,并且预编码器的输出是二进制元素的向量。这个设计问题是一个np困难的二进制二次规划,由于预编码器的输出向量的元素有一个位的限制,因此,很难解决。在本文中,我们通过几个步骤将问题重新表述为等效的连续域双凸形式来解决这个困难。我们最终的双凸重构是通过精确的惩罚方法得到的,并且可以使用标准的块坐标上升算法有效地求解。我们通过仿真结果表明,所提出的设计在(未编码)误码率方面优于现有方案。数值分析进一步表明,在大多数实际情况下,我们的求解算法只需几十次迭代即可收敛,计算效率很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Full Duplex MIMO Digital Beamforming with Reduced Complexity AUXTX Analog Cancellation Cognitive Management and Control of Optical Networks in Dynamic Environments Offloading Media Traffic to Programmable Data Plane Switches Simultaneous Transmitting and Air Computing for High-Speed Point-to-Point Wireless Communication A YouTube Dataset with User-level Usage Data: Baseline Characteristics and Key Insights
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1