Maximum likelihood parameter estimation from incomplete data via the sensitivity equations: the continuous-time case

C. Charalambous, A. Logothetis
{"title":"Maximum likelihood parameter estimation from incomplete data via the sensitivity equations: the continuous-time case","authors":"C. Charalambous, A. Logothetis","doi":"10.1109/ACC.1999.782398","DOIUrl":null,"url":null,"abstract":"The problem of estimating the parameters for continuous-time partially observed systems is discussed. New exact filters for obtaining maximum likelihood (ML) parameter estimates via the expectation maximization algorithm are derived. The methodology exploits relations between incomplete and complete data likelihood and gradient of likelihood functions, which are derived using Girsanov's measure transformations. The ML parameter estimates are described by a set of Lyapunov sensitivity equations.","PeriodicalId":441363,"journal":{"name":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1999.782398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

Abstract

The problem of estimating the parameters for continuous-time partially observed systems is discussed. New exact filters for obtaining maximum likelihood (ML) parameter estimates via the expectation maximization algorithm are derived. The methodology exploits relations between incomplete and complete data likelihood and gradient of likelihood functions, which are derived using Girsanov's measure transformations. The ML parameter estimates are described by a set of Lyapunov sensitivity equations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于灵敏度方程的不完全数据的最大似然参数估计:连续时间情况
讨论了连续时间部分观测系统的参数估计问题。通过期望最大化算法导出了新的精确滤波器,用于获取最大似然(ML)参数估计。该方法利用不完全和完整数据的似然和似然函数的梯度之间的关系,这是利用吉尔萨诺夫的度量变换推导出来的。机器学习参数估计由一组李雅普诺夫灵敏度方程描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A global optimization technique for fixed-order control design Bifurcation control of nonlinear systems with time-periodic coefficients Nonlinear programming approach to biaffine matrix inequality problems in multiobjective and structured control Optimal stochastic fault detection filter Balanced performance preserving controller reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1