{"title":"Multi-Spectral Data Fusion Using a Markov Random Field Model : Application to Satellite Image Classification","authors":"D. Murray, J. Zerubia","doi":"10.1109/SSAP.1994.572527","DOIUrl":null,"url":null,"abstract":"I n this paper, we present a method of classifying multi-spectral satellite images. Data fusion of the multi-spectral images is achieved using a Markov random field approach. Classification is expressed as an energy minimization, problem and solved using Simulated Annealing with the Gibbs Sampler fo r label updating. The results of two digerent methods of class training, supervised and unsupervised, are shown. The proposed fusion method improved the results over those with only a single input channel.","PeriodicalId":151571,"journal":{"name":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1994.572527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
I n this paper, we present a method of classifying multi-spectral satellite images. Data fusion of the multi-spectral images is achieved using a Markov random field approach. Classification is expressed as an energy minimization, problem and solved using Simulated Annealing with the Gibbs Sampler fo r label updating. The results of two digerent methods of class training, supervised and unsupervised, are shown. The proposed fusion method improved the results over those with only a single input channel.