Multivariate fault detection with convex hull

M. Luo
{"title":"Multivariate fault detection with convex hull","authors":"M. Luo","doi":"10.1109/DASC.2004.1390758","DOIUrl":null,"url":null,"abstract":"We propose a multivariate trending for aircraft fault detection. Multivariate trending generate fault indicators using output sensor data, is one of black-box approach. We use convex polygon for the computation of a rough shape or extent of the normal data set. Quickhull algorithm is used for the hull finding because it is simpler and uses less memory. It is assumed that the normal data points are in general position, so that their convex hull is a simple complex. We represent a d-dimensional convex hull by its vertices and (d-1)-dimensional faces. From multivariate trend analysis, if we find the measurements have the tendency to leave the convex polygon, this measurement can be labeled as a fault. If a new point is above all hyperplane of the convex hull, it is outside the convex polygon.","PeriodicalId":422463,"journal":{"name":"The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2004.1390758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose a multivariate trending for aircraft fault detection. Multivariate trending generate fault indicators using output sensor data, is one of black-box approach. We use convex polygon for the computation of a rough shape or extent of the normal data set. Quickhull algorithm is used for the hull finding because it is simpler and uses less memory. It is assumed that the normal data points are in general position, so that their convex hull is a simple complex. We represent a d-dimensional convex hull by its vertices and (d-1)-dimensional faces. From multivariate trend analysis, if we find the measurements have the tendency to leave the convex polygon, this measurement can be labeled as a fault. If a new point is above all hyperplane of the convex hull, it is outside the convex polygon.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于凸包的多变量故障检测
提出了一种用于飞机故障检测的多元趋势分析方法。多元趋势利用传感器输出数据生成故障指标,是黑盒方法的一种。我们使用凸多边形来计算正常数据集的粗略形状或范围。快速船体算法用于船体查找,因为它更简单,使用更少的内存。假设法向数据点处于一般位置,因此它们的凸包是一个简单的复合体。我们用顶点和(d-1)维面来表示一个d维凸包。从多变量趋势分析中,如果我们发现测量值有离开凸多边形的趋势,则可以将该测量值标记为故障。如果一个新的点在凸包的所有超平面之上,则它在凸多边形的外面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aging avionics and net-centric operations Space shuttle UHF communications performance evaluation The application of fiber optic wavelength division multiplexing in RF avionics Scheduling heuristics for on-board sequential air conflict solving TDMS: test data management system for aviation software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1