Developing Efficient Implementations of Bellman-Ford and Forward-Backward Graph Algorithms for NEC SX-ACE

I. Afanasyev, A. Antonov, D. Nikitenko, V. Voevodin, V. Voevodin, K. Komatsu, Osamu Watanabe, A. Musa, Hiroaki Kobayashi
{"title":"Developing Efficient Implementations of Bellman-Ford and Forward-Backward Graph Algorithms for NEC SX-ACE","authors":"I. Afanasyev, A. Antonov, D. Nikitenko, V. Voevodin, V. Voevodin, K. Komatsu, Osamu Watanabe, A. Musa, Hiroaki Kobayashi","doi":"10.14529/JSFI180311","DOIUrl":null,"url":null,"abstract":"The main goal of this work is to demonstrate that the development of data-intensive appli- cations for vector systems is not only important and interesting, but is also very possible. In this paper we describe possible implementations of two fundamental graph-processing algorithms for an NEC SX-ACE vector computer: the Bellman–Ford algorithm for single source shortest paths computation and the Forward-Backward algorithm for strongly connected components detection. The proposed implementations have been developed and optimised in accordance with features and properties of the target architecture, which allowed them to achieve performance comparable to other traditional platforms, such as Intel Skylake, Intel Knight Landing or IBM Power processors.","PeriodicalId":338883,"journal":{"name":"Supercomput. Front. Innov.","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supercomput. Front. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/JSFI180311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The main goal of this work is to demonstrate that the development of data-intensive appli- cations for vector systems is not only important and interesting, but is also very possible. In this paper we describe possible implementations of two fundamental graph-processing algorithms for an NEC SX-ACE vector computer: the Bellman–Ford algorithm for single source shortest paths computation and the Forward-Backward algorithm for strongly connected components detection. The proposed implementations have been developed and optimised in accordance with features and properties of the target architecture, which allowed them to achieve performance comparable to other traditional platforms, such as Intel Skylake, Intel Knight Landing or IBM Power processors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在NEC SX-ACE上开发Bellman-Ford和正向向后图算法的高效实现
这项工作的主要目标是证明矢量系统的数据密集型应用的发展不仅是重要和有趣的,而且是非常可能的。在本文中,我们描述了NEC SX-ACE矢量计算机的两种基本图形处理算法的可能实现:用于单源最短路径计算的Bellman-Ford算法和用于强连接组件检测的Forward-Backward算法。提议的实现已经根据目标架构的特性和属性进行了开发和优化,这使得它们能够达到与其他传统平台(如英特尔Skylake,英特尔Knight Landing或IBM Power处理器)相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Supercomputer-Based Modeling System for Short-Term Prediction of Urban Surface Air Quality River Routing in the INM RAS-MSU Land Surface Model: Numerical Scheme and Parallel Implementation on Hybrid Supercomputers Data Assimilation by Neural Network for Ocean Circulation: Parallel Implementation Multistage Iterative Method to Tackle Inverse Problems of Wave Tomography Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas: Challenges and Initial Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1