{"title":"Tracking Inattention","authors":"Nathan G. Goldstein","doi":"10.2139/ssrn.3641353","DOIUrl":null,"url":null,"abstract":"\n This study proposes a real-time estimate of inattention, based on micro-level data. I show that a simple specification that estimates the persistence of a forecaster's deviation from the mean provides a direct estimate of parameters of information frictions according to prominent models of expectations. The new estimate can also be interpreted as a hybrid measure of both information frictions and behavioral frictions. Using the new specification, I revise several key findings documented in the previous literature. I find higher levels of inattention and document new forms of variations over time and across variables, horizons, individuals, and types of agents. I also report new results from long-run forecasts and document an unprecedented response to COVID-19.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3641353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This study proposes a real-time estimate of inattention, based on micro-level data. I show that a simple specification that estimates the persistence of a forecaster's deviation from the mean provides a direct estimate of parameters of information frictions according to prominent models of expectations. The new estimate can also be interpreted as a hybrid measure of both information frictions and behavioral frictions. Using the new specification, I revise several key findings documented in the previous literature. I find higher levels of inattention and document new forms of variations over time and across variables, horizons, individuals, and types of agents. I also report new results from long-run forecasts and document an unprecedented response to COVID-19.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跟踪注意力不集中
本研究提出了一种基于微观层面数据的注意力不集中的实时估计方法。我展示了一个简单的规范,估计预测者偏离平均值的持久性,根据突出的期望模型,提供了对信息摩擦参数的直接估计。新的估计也可以解释为信息摩擦和行为摩擦的混合测量。使用新的规范,我修改了以前文献中记录的几个关键发现。我发现了更高层次的注意力不集中,并记录了随着时间的推移,不同变量、视野、个体和代理类型的新形式的变化。我还报告了长期预测的新结果,并记录了对COVID-19的前所未有的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embrace the Differences: Revisiting the Pollyvote Method of Combining Forecasts for U.S. Presidential Elections (2004 to 2020) A Century of Economic Policy Uncertainty Through the French-Canadian Lens Informational Efficiency and Behaviour Within In-Play Prediction Markets A New Class of Robust Observation-Driven Models Modelling and Forecasting of the Nigerian Stock Exchange.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1