Contextual language model adaptation using dynamic classes

Lucy Vasserman, Ben Haynor, Petar S. Aleksic
{"title":"Contextual language model adaptation using dynamic classes","authors":"Lucy Vasserman, Ben Haynor, Petar S. Aleksic","doi":"10.1109/SLT.2016.7846301","DOIUrl":null,"url":null,"abstract":"Recent focus on assistant products has increased the need for extremely flexible speech systems that adapt well to specific users' needs. An important aspect of this is enabling users to make voice commands referencing their own personal data, such as favorite songs, application names, and contacts. Recognition accuracy for common commands such as playing music and sending text messages can be greatly improved if we know a user's preferences. In the past, we have addressed this problem using class-based language models that allow for query-time injection of class instances. However, this approach is limited by the need to train class-based models ahead of time.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Recent focus on assistant products has increased the need for extremely flexible speech systems that adapt well to specific users' needs. An important aspect of this is enabling users to make voice commands referencing their own personal data, such as favorite songs, application names, and contacts. Recognition accuracy for common commands such as playing music and sending text messages can be greatly improved if we know a user's preferences. In the past, we have addressed this problem using class-based language models that allow for query-time injection of class instances. However, this approach is limited by the need to train class-based models ahead of time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用动态类适应上下文语言模型
最近对辅助产品的关注增加了对极其灵活的语音系统的需求,这些系统可以很好地适应特定用户的需求。这样做的一个重要方面是允许用户使用语音命令来引用他们自己的个人数据,比如最喜欢的歌曲、应用程序名称和联系人。如果我们知道用户的偏好,对播放音乐和发送短信等常见命令的识别准确性可以大大提高。在过去,我们使用基于类的语言模型来解决这个问题,该模型允许在查询时注入类实例。然而,由于需要提前训练基于类的模型,这种方法受到了限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Further optimisations of constant Q cepstral processing for integrated utterance and text-dependent speaker verification Learning dialogue dynamics with the method of moments A study of speech distortion conditions in real scenarios for speech processing applications Comparing speaker independent and speaker adapted classification for word prominence detection Influence of corpus size and content on the perceptual quality of a unit selection MaryTTS voice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1