Consensus-based distributed optimization with malicious nodes

S. Sundaram, B. Gharesifard
{"title":"Consensus-based distributed optimization with malicious nodes","authors":"S. Sundaram, B. Gharesifard","doi":"10.1109/ALLERTON.2015.7447011","DOIUrl":null,"url":null,"abstract":"We investigate the vulnerabilities of consensus-based distributed optimization protocols to nodes that deviate from the prescribed update rule (e.g., due to failures or adversarial attacks). After characterizing certain fundamental limitations on the performance of any distributed optimization algorithm in the presence of adversaries, we propose a robust consensus-based distributed optimization algorithm that is guaranteed to converge to the convex hull of the set of minimizers of the non-adversarial nodes' functions. We also study the distance-to-optimality properties of our proposed robust algorithm in terms of F-local sets of the graph. We show that finding the largest size of such sets is NP-hard.","PeriodicalId":112948,"journal":{"name":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2015.7447011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

We investigate the vulnerabilities of consensus-based distributed optimization protocols to nodes that deviate from the prescribed update rule (e.g., due to failures or adversarial attacks). After characterizing certain fundamental limitations on the performance of any distributed optimization algorithm in the presence of adversaries, we propose a robust consensus-based distributed optimization algorithm that is guaranteed to converge to the convex hull of the set of minimizers of the non-adversarial nodes' functions. We also study the distance-to-optimality properties of our proposed robust algorithm in terms of F-local sets of the graph. We show that finding the largest size of such sets is NP-hard.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于共识的恶意节点分布式优化
我们研究了基于共识的分布式优化协议对偏离规定更新规则的节点的漏洞(例如,由于失败或对抗性攻击)。在描述了存在对手时任何分布式优化算法性能的某些基本限制之后,我们提出了一种鲁棒的基于共识的分布式优化算法,该算法保证收敛于非对抗节点函数的最小值集的凸包。我们还研究了我们提出的鲁棒算法在图的f局部集上的距离至最优性性质。我们证明了找到这样的集合的最大大小是np困难的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust temporal logic model predictive control Efficient replication of queued tasks for latency reduction in cloud systems Cut-set bound is loose for Gaussian relay networks Improving MIMO detection performance in presence of phase noise using norm difference criterion Utility fair RAT selection in multi-homed LTE/802.11 networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1