End-to-End Deep Learning assisted by Reconfigurable Intelligent Surface for uplink MU massive MIMO under PA Non-Linearities

A. Arfaoui, Maha Cherif, R. Bouallègue
{"title":"End-to-End Deep Learning assisted by Reconfigurable Intelligent Surface for uplink MU massive MIMO under PA Non-Linearities","authors":"A. Arfaoui, Maha Cherif, R. Bouallègue","doi":"10.1109/ISCC58397.2023.10217870","DOIUrl":null,"url":null,"abstract":"This paper investigates a novel high-performance autoencoder based deep learning approach for Multi-User massive MIMO uplink systems assisted by a Reconfigurable Intelligent Surface (RIS) in which the users are equipped by Power Amplifiers (PA) and aim to communicate with the base station. Indeed, the communication process is formulated in the form of a Deep Neuronal Network (DNN). To handle these scenarios, we have designed a DNN network that includes two components. the first is an encoder intended to process the nonlinear distortions of the PA. The second is a decoder consisting of two fundamental steps. 1) A classic Minimum Mean Square Error linear decoder to decode the information transmitted by the users. 2) The neural network decoder to minimize interference. The results of the numerical simulation illustrate that the proposed method offers a significant improvement in error performance in comparison with the different basic schemes.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10217870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates a novel high-performance autoencoder based deep learning approach for Multi-User massive MIMO uplink systems assisted by a Reconfigurable Intelligent Surface (RIS) in which the users are equipped by Power Amplifiers (PA) and aim to communicate with the base station. Indeed, the communication process is formulated in the form of a Deep Neuronal Network (DNN). To handle these scenarios, we have designed a DNN network that includes two components. the first is an encoder intended to process the nonlinear distortions of the PA. The second is a decoder consisting of two fundamental steps. 1) A classic Minimum Mean Square Error linear decoder to decode the information transmitted by the users. 2) The neural network decoder to minimize interference. The results of the numerical simulation illustrate that the proposed method offers a significant improvement in error performance in comparison with the different basic schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可重构智能曲面的端到端深度学习在PA非线性下的上行MU大规模MIMO研究
本文研究了一种新的基于高性能自编码器的深度学习方法,用于多用户大规模MIMO上行系统,该系统由可重构智能表面(RIS)辅助,其中用户配备功率放大器(PA)并旨在与基站通信。事实上,通信过程是以深度神经网络(DNN)的形式制定的。为了处理这些情况,我们设计了一个DNN网络,它包括两个组件。第一种是编码器,用于处理PA的非线性失真。第二种是由两个基本步骤组成的解码器。1)经典的最小均方误差线性解码器,对用户传输的信息进行解码。2)神经网络解码器,最大限度地减少干扰。数值模拟结果表明,与其他基本方案相比,该方法在误差性能上有明显改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
(POSTER) Advanced LTCC-Integrated Technologies for mmWave 5G/Satellite Communication Antennas Multiple Information Extraction and Interaction for Emotion Recognition in Multi-Party Conversation A GRASP-Based Algorithm for Virtual Network Embedding Designing Healthcare Relational Agents: A Conceptual Framework with User-Centered Design Guidelines Analysis of One-Bit DAC for RIS-Assisted MU Massive MIMO Systems with Efficient Autoencoder Based Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1