Deep Reinforcement Learning with DQN vs. PPO in VizDoom

Anton Zakharenkov, Ilya Makarov
{"title":"Deep Reinforcement Learning with DQN vs. PPO in VizDoom","authors":"Anton Zakharenkov, Ilya Makarov","doi":"10.1109/CINTI53070.2021.9668479","DOIUrl":null,"url":null,"abstract":"VizDoom is a flexible and easy-to-use 3D reinforcement learning research platform based on the well-known Doom first-person shooter. The challenge is to create bots that compete in the DeathMatch track, making decisions based solely on visual in-formation from the screen. The paper offers a com-parison of different approaches with reinforcement learning: Q-learning and policy-gradient algorithms. We explore the distributed learning paradigm in re-inforcement learning, and also discuss the differences in speed and quality of convergence when adding an object detection module.","PeriodicalId":340545,"journal":{"name":"2021 IEEE 21st International Symposium on Computational Intelligence and Informatics (CINTI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Symposium on Computational Intelligence and Informatics (CINTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINTI53070.2021.9668479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

VizDoom is a flexible and easy-to-use 3D reinforcement learning research platform based on the well-known Doom first-person shooter. The challenge is to create bots that compete in the DeathMatch track, making decisions based solely on visual in-formation from the screen. The paper offers a com-parison of different approaches with reinforcement learning: Q-learning and policy-gradient algorithms. We explore the distributed learning paradigm in re-inforcement learning, and also discuss the differences in speed and quality of convergence when adding an object detection module.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在VizDoom中使用DQN与PPO进行深度强化学习
VizDoom是一个灵活易用的3D强化学习研究平台,基于著名的第一人称射击游戏《毁灭战士》。我们面临的挑战是创造出能够在DeathMatch赛道上竞争的机器人,并基于屏幕上的视觉信息做出决定。本文对不同的强化学习方法进行了比较:q学习和策略梯度算法。我们探索了强化学习中的分布式学习范式,并讨论了添加目标检测模块时收敛速度和质量的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clustering of Business Organisations based on Textual Data - An LDA Topic Modeling Approach Effective ECG data conversion solution to solve ECG data interoperability problems Adaptive Online Opponent Game Policy Modeling with Association Rule Mining Meat Factory Cell: Assisting meat processors address sustainability in meat production Validation of a Self-developed Algorithm for Solving Inverse Problems on Impedance Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1