MEASURING DISPLACEMENT AND VELOCITY OF A STRIKER USING A RADIO-INTERFEROMETER

V. Balandin, V. Parkhachev
{"title":"MEASURING DISPLACEMENT AND VELOCITY OF A STRIKER USING A RADIO-INTERFEROMETER","authors":"V. Balandin, V. Parkhachev","doi":"10.32326/1814-9146-2019-81-1-118-128","DOIUrl":null,"url":null,"abstract":"Investigating impact interaction of solid and deformed bodies with obstacles of various physical natures requires developing experimental methodologies of registering the parameters of the interaction process. In experimental investigations of impact interaction of solids, it is common practice to measure displacement of strikers as a function of time, as well as their velocity and deceleration. To determine the displacement and velocity of a striker, a radio-interferometric methodology of registering the displacement of its rear end is proposed. In contrast with the registration methods based on high-speed filming and pulsed X-ray photography, the method using a millimeter-range radio-interferometer provides continuous high-accuracy registering of the displacement of the rear end of a striker in a wide range of displacement values. To test the effectiveness of the methodology, a series of experiments have been conducted on registering the motion of a cylindrical striker of an aluminum alloy, fired from a 20mm-dia gas gun. The displacement of the striker was also monitored using high-speed filming. The results of measuring using the two methodologies differ within the limits of the error of measurement. Based on the results of the above experiments, it has been concluded that the methodology of determining the displacement and velocity of strikers in a ballistic experiment using a mm-range radio-interferometer makes it possible to measure practically continuously large displacements (100 mm and larger) to a safe accuracy. The present methodology can be used for measuring the displacement and velocity of the rear end of a striker interacting with obstacles of various physical natures (metals, ceramics, soils, concretes, etc.).","PeriodicalId":340995,"journal":{"name":"Problems of strenght and plasticity","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problems of strenght and plasticity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32326/1814-9146-2019-81-1-118-128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Investigating impact interaction of solid and deformed bodies with obstacles of various physical natures requires developing experimental methodologies of registering the parameters of the interaction process. In experimental investigations of impact interaction of solids, it is common practice to measure displacement of strikers as a function of time, as well as their velocity and deceleration. To determine the displacement and velocity of a striker, a radio-interferometric methodology of registering the displacement of its rear end is proposed. In contrast with the registration methods based on high-speed filming and pulsed X-ray photography, the method using a millimeter-range radio-interferometer provides continuous high-accuracy registering of the displacement of the rear end of a striker in a wide range of displacement values. To test the effectiveness of the methodology, a series of experiments have been conducted on registering the motion of a cylindrical striker of an aluminum alloy, fired from a 20mm-dia gas gun. The displacement of the striker was also monitored using high-speed filming. The results of measuring using the two methodologies differ within the limits of the error of measurement. Based on the results of the above experiments, it has been concluded that the methodology of determining the displacement and velocity of strikers in a ballistic experiment using a mm-range radio-interferometer makes it possible to measure practically continuously large displacements (100 mm and larger) to a safe accuracy. The present methodology can be used for measuring the displacement and velocity of the rear end of a striker interacting with obstacles of various physical natures (metals, ceramics, soils, concretes, etc.).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用无线电干涉仪测量击头的位移和速度
研究固体和变形体与各种物理性质障碍物的碰撞相互作用需要发展记录相互作用过程参数的实验方法。在固体碰撞相互作用的实验研究中,通常的做法是测量击打者的位移作为时间的函数,以及它们的速度和减速。为了确定打击器的位移和速度,提出了一种记录其后端位移的无线电干涉方法。与基于高速拍摄和脉冲x射线摄影的配准方法相比,该方法使用毫米范围的无线电干涉仪在大范围的位移值范围内提供了连续高精度的瞄准器后端的位移配准。为了验证该方法的有效性,进行了一系列的实验,记录了从20mm直径的气枪中发射的铝合金圆柱射手的运动。此外,还使用高速摄像监控了前锋的位移。使用这两种方法的测量结果在测量误差范围内不同。根据上述实验的结果,可以得出结论,在弹道实验中,用毫米范围的无线电干涉仪测定击头的位移和速度的方法,可以以安全的精度测量几乎连续的大位移(100毫米或更大)。本方法可用于测量与各种物理性质的障碍物(金属、陶瓷、土壤、混凝土等)相互作用的打击器后端的位移和速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DYNAMICS OF POROVISCOELASTIC PRISMATIC SOLID FOR VARIOUS VALUES OF MATERIAL PERMEABILITY ACTIVE DAMPING OF TRANSVERSE VIBRATIONS OF CONSOLE BEAM BY PIEZOELECTRIC LAYER WITH DIFFERENT ELECTRODE SHAPES OF DAMAGED MEDIA A MATHEMATICAL MODEL OF NONSTATIONARY MOTION OF A VISCOELASTIC FLUID IN ROLLER BEARINGS DYNAMIC TESTS OF FROZEN SAND SOILS NON-MONOTONICITY, SIGN CHANGES AND OTHER FEATURES OF POISSON'S RATIO EVOLUTION FOR ISOTROPIC LINEAR VISCOELASTIC MATERIALS UNDER TENSION AT CONSTANT STRESS RATES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1