Scalable collaborative filtering based on efficient identification of similar users

Sang-Chul Lee, Si-Yong Lee, Dong-Kyu Chae, Sang-Wook Kim
{"title":"Scalable collaborative filtering based on efficient identification of similar users","authors":"Sang-Chul Lee, Si-Yong Lee, Dong-Kyu Chae, Sang-Wook Kim","doi":"10.1109/ICNIDC.2016.7974566","DOIUrl":null,"url":null,"abstract":"User-based collaborative filtering suffers from significant amount of computational overhead to find users similar to a target user. To reduce the overhead, we propose a novel method to identify unnecessary users and items in computing the similarity. Also, we propose a data structure to support the method quite efficiently. Through extensive experiments, we show the proposed method outperforms traditional methods up to 33.8 times.","PeriodicalId":439987,"journal":{"name":"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIDC.2016.7974566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

User-based collaborative filtering suffers from significant amount of computational overhead to find users similar to a target user. To reduce the overhead, we propose a novel method to identify unnecessary users and items in computing the similarity. Also, we propose a data structure to support the method quite efficiently. Through extensive experiments, we show the proposed method outperforms traditional methods up to 33.8 times.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高效识别相似用户的可扩展协同过滤
基于用户的协同过滤在查找与目标用户相似的用户时,会产生大量的计算开销。为了减少开销,我们提出了一种在计算相似度时识别不需要的用户和项目的新方法。此外,我们还提出了一种数据结构来有效地支持该方法。通过大量的实验,我们表明,该方法优于传统方法高达33.8倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection-assisted interference parameter estimation and interference cancellation for LTE-Advanced system A network risk assessment methodology for power communication business An experimental study: The sufficient respiration rate detection technique via continuous wave Doppler radar Automatic calculation model of large scale soil loss model based on csle model Improved belief propagation with istinctiveness measure for stereo matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1