Noncausal Nonminimum Phase Arma Modeling Of Non-gaussian Processes

A. Petropulu
{"title":"Noncausal Nonminimum Phase Arma Modeling Of Non-gaussian Processes","authors":"A. Petropulu","doi":"10.1109/SSAP.1994.572482","DOIUrl":null,"url":null,"abstract":"A method is presented for the estimation of the parameters of a noncausal nonminimum phase ARMA model for non-Gaussian random processes. Using certain higher-order cepstra slices, the Fourier phases of two intermediate sequences, hmin(n) and hmax(n), can be computed, where hmin(n) is composed of the minimum phase parts of the AR and MA models, and hmax(n) of the corresponding maximum phase parts. Under the condition that the AR and MA models do not have common zeros, these two sequences can be estimated from their phases only, and lead to the reconstruction of the AR and MA parameters, within a scalar and a time shift. The AR and MA orders do not have to be estimated separately, but they are a byproduct of the parameter estimation procedure. Unlike existing methods, the estimation procedure is fairly robust if a small order mismatch occurs. Since the robustness of the method in the presence of additive noise depends on the accuracy of the estimated phases of hmin(n) and hmax(n), the phase errors occurring due to finite length data are studied.","PeriodicalId":151571,"journal":{"name":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1994.572482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A method is presented for the estimation of the parameters of a noncausal nonminimum phase ARMA model for non-Gaussian random processes. Using certain higher-order cepstra slices, the Fourier phases of two intermediate sequences, hmin(n) and hmax(n), can be computed, where hmin(n) is composed of the minimum phase parts of the AR and MA models, and hmax(n) of the corresponding maximum phase parts. Under the condition that the AR and MA models do not have common zeros, these two sequences can be estimated from their phases only, and lead to the reconstruction of the AR and MA parameters, within a scalar and a time shift. The AR and MA orders do not have to be estimated separately, but they are a byproduct of the parameter estimation procedure. Unlike existing methods, the estimation procedure is fairly robust if a small order mismatch occurs. Since the robustness of the method in the presence of additive noise depends on the accuracy of the estimated phases of hmin(n) and hmax(n), the phase errors occurring due to finite length data are studied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非高斯过程的非因果非最小相位Arma建模
提出了一种非高斯随机过程非因果非最小相位ARMA模型的参数估计方法。利用一定的高阶倒频谱切片,可以计算hmin(n)和hmax(n)两个中间序列的傅里叶相位,其中hmin(n)由AR和MA模型的最小相位部分组成,hmax(n)由相应的最大相位部分组成。在AR和MA模型没有公共零的情况下,这两个序列只能从它们的相位估计,并在一个标量和一个时移范围内重建AR和MA参数。AR和MA阶不必单独估计,但它们是参数估计过程的副产品。与现有的方法不同,如果发生小的顺序不匹配,估计过程是相当健壮的。由于该方法在加性噪声存在时的鲁棒性取决于估计hmin(n)和hmax(n)相位的准确性,因此研究了有限长度数据引起的相位误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hopfield Network Approach to Beamforrning in Spread Spectrum Communication A Comparative Study of Statistical and Neural DOA Estimation Techniques A New Cumulant Based Phase Estimation Nonminimum-phase Systems By Allpass Study of the Couple (Reflection Coefficient, K-Nn Rule) An N-D Technique for Coherent Wave Doa Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1