{"title":"Supporting Natural Hazards Management With Geospatial Technologies","authors":"Diana Mitsova","doi":"10.1093/acrefore/9780199389407.013.283","DOIUrl":null,"url":null,"abstract":"On a global scale, natural disasters continue to inflict a heavy toll on communities and to pose challenges that either persist or amplify in complexity and scale. There is a need for flexible and adaptive solutions that can bridge collaborative efforts among public agencies, private and nonprofit organizations, and communities. The ability to explore and analyze spatial data, solve problems, visualize, and communicate outcomes to support the collaborative efforts and decision-making processes of a broad range of stakeholders is critical in natural hazards and disaster management. The adoption of geospatial technologies has long been at the core of natural hazards risk assessment, linking existing technologies in GIS (geographic information system) with spatial analytical techniques and modeling. Practice and research have shown that though risk-reduction strategies and the mobilization of disaster-response resources depend on integrating governance into the process of building disaster resilience, the implementation of such strategies is best informed by accurate spatial data acquisition, fast processing, analysis, and integration with other informational resources. In recent years, new and accessible sources and types of data have greatly enhanced the ability of practitioners and researchers to develop approaches that support rapid and efficient disaster response, including forecasting, early warning systems, and damage assessments. Innovations in geospatial technologies, including remote sensing, real-time Web applications, and distributed Web-based GIS services, feature platforms for systematizing and sharing data, maps, applications, and analytics. Distributed GIS offers enormous opportunities to strengthen collaboration and improve communication and efficiency by enabling agencies and end users to connect and interact with remotely located information products, apps, and services. Newer developments in geospatial technologies include real-time data management and unmanned aircraft systems (UAS), which help organizations make rapid assessments and facilitate the decision-making process in disasters.","PeriodicalId":300110,"journal":{"name":"Oxford Research Encyclopedia of Natural Hazard Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford Research Encyclopedia of Natural Hazard Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/acrefore/9780199389407.013.283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
On a global scale, natural disasters continue to inflict a heavy toll on communities and to pose challenges that either persist or amplify in complexity and scale. There is a need for flexible and adaptive solutions that can bridge collaborative efforts among public agencies, private and nonprofit organizations, and communities. The ability to explore and analyze spatial data, solve problems, visualize, and communicate outcomes to support the collaborative efforts and decision-making processes of a broad range of stakeholders is critical in natural hazards and disaster management. The adoption of geospatial technologies has long been at the core of natural hazards risk assessment, linking existing technologies in GIS (geographic information system) with spatial analytical techniques and modeling. Practice and research have shown that though risk-reduction strategies and the mobilization of disaster-response resources depend on integrating governance into the process of building disaster resilience, the implementation of such strategies is best informed by accurate spatial data acquisition, fast processing, analysis, and integration with other informational resources. In recent years, new and accessible sources and types of data have greatly enhanced the ability of practitioners and researchers to develop approaches that support rapid and efficient disaster response, including forecasting, early warning systems, and damage assessments. Innovations in geospatial technologies, including remote sensing, real-time Web applications, and distributed Web-based GIS services, feature platforms for systematizing and sharing data, maps, applications, and analytics. Distributed GIS offers enormous opportunities to strengthen collaboration and improve communication and efficiency by enabling agencies and end users to connect and interact with remotely located information products, apps, and services. Newer developments in geospatial technologies include real-time data management and unmanned aircraft systems (UAS), which help organizations make rapid assessments and facilitate the decision-making process in disasters.