Face Recognition Using the Improved Bag of Words Model

Xiao-Cui Li, Chun-hui Zhao, Yan Cang
{"title":"Face Recognition Using the Improved Bag of Words Model","authors":"Xiao-Cui Li, Chun-hui Zhao, Yan Cang","doi":"10.1109/IMCCC.2013.172","DOIUrl":null,"url":null,"abstract":"Bag of words (BoW) model, which was originally used for document processing field, has been introduced to computer vision field recently and used in object recognition successfully. However, in face recognition, the order less collection of local patches in BoW model cannot provide strong distinctive information since the objects (face images) belong to the same category. A new framework for extracting facial features based on BoW model is proposed in this paper, which can maintain holistic spatial information. Experimental results show that the improved method can obtain better face recognition performance on face images of AR database with extreme expressions, variant illuminations, and partial occlusions.","PeriodicalId":360796,"journal":{"name":"2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCCC.2013.172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Bag of words (BoW) model, which was originally used for document processing field, has been introduced to computer vision field recently and used in object recognition successfully. However, in face recognition, the order less collection of local patches in BoW model cannot provide strong distinctive information since the objects (face images) belong to the same category. A new framework for extracting facial features based on BoW model is proposed in this paper, which can maintain holistic spatial information. Experimental results show that the improved method can obtain better face recognition performance on face images of AR database with extreme expressions, variant illuminations, and partial occlusions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进词袋模型的人脸识别
原用于文档处理领域的词包模型(BoW)最近被引入计算机视觉领域,并成功地应用于目标识别。然而,在人脸识别中,由于物体(人脸图像)属于同一类别,BoW模型中局部patch的低阶采集无法提供强的特征信息。提出了一种新的基于BoW模型的人脸特征提取框架,该框架能够保持整体的空间信息。实验结果表明,改进后的方法可以在AR数据库中具有极端表情、不同光照和部分遮挡的人脸图像上获得较好的识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Searching for the Lost Wings of the Angel
IF 0 Positions-east Asia Cultures CritiquePub Date : 1999-02-01 DOI: 10.1215/10679847-7-1-51
Chenhao Xue
Exhaled nitric oxide in school children: Searching for the lost variability
IF 1.8 4区 医学Allergologia et immunopathologiaPub Date : 2016-05-01 DOI: 10.1016/j.aller.2015.06.002
P.W. Garcia-Marcos , M.J. Soriano-Pérez , V. Perez-Fernández , J. Valverde-Molina
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Cognitive Making Decision Engine Authentication Protocol of RFID System Based on Security Policy Optimal Dispatch Considering the Ability of Active Power Control of Wind Farms Hardware Architecture Design of Image Preprocessing and Phase Calculating Algorithms Based on FPGA An Algorithm for Detecting Lines Based on Primitive Connection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1