Applications of unsupervised clustering algorithms to aircraft identification using high range resolution radar

D. T. Pham
{"title":"Applications of unsupervised clustering algorithms to aircraft identification using high range resolution radar","authors":"D. T. Pham","doi":"10.1109/NAECON.1998.710121","DOIUrl":null,"url":null,"abstract":"Identification of aircraft from high range resolution (HRR) radar range profiles requires a database of information capturing the variability of the individual range profiles as a function of viewing aspect. This database can be a collection of individual signatures or a collection of average signatures distributed over the region of viewing aspect of interest. An efficient database is one which captures the intrinsic variability of the HRR signatures without either excessive redundancy (over-characterization) typical of single-signature databases or without the loss of information (under-characterization) common when averaging arbitrary group of signatures. The identification of \"natural\" clustering of similar HRR signatures provides a means for creating efficient databases of either individual signatures or of signature templates. Using a k-means and the Kohonen self-organizing feature net, we identify the natural clustering of the HRR radar range profiles into groups of similar signatures based on the match quality metric (Euclidean distance) used within a Vector quantizer (VQ) classification algorithm. This greatly reduces the redundancy in such databases while retaining classification performance. Such clusters can be useful in template-based algorithms where groups of signatures are averaged to produce a template. Instead of basing the group of signatures to be averaged on arbitrary regions of viewing aspect, the averages are taken over the signatures contained in the natural clusters which have been Identified. The benefits of applying natural cluster identification to individual-signature HRR data preparation are decreased algorithm memory and computational requirements with a consequent decrease in the time required to perform identification calculations. When applied to template databases the benefits are improved identification performance. This paper describes the techniques used for identifying HRR signature clusters and describes the statistical properties of such clusters.","PeriodicalId":202280,"journal":{"name":"Proceedings of the IEEE 1998 National Aerospace and Electronics Conference. NAECON 1998. Celebrating 50 Years (Cat. No.98CH36185)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 1998 National Aerospace and Electronics Conference. NAECON 1998. Celebrating 50 Years (Cat. No.98CH36185)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.1998.710121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Identification of aircraft from high range resolution (HRR) radar range profiles requires a database of information capturing the variability of the individual range profiles as a function of viewing aspect. This database can be a collection of individual signatures or a collection of average signatures distributed over the region of viewing aspect of interest. An efficient database is one which captures the intrinsic variability of the HRR signatures without either excessive redundancy (over-characterization) typical of single-signature databases or without the loss of information (under-characterization) common when averaging arbitrary group of signatures. The identification of "natural" clustering of similar HRR signatures provides a means for creating efficient databases of either individual signatures or of signature templates. Using a k-means and the Kohonen self-organizing feature net, we identify the natural clustering of the HRR radar range profiles into groups of similar signatures based on the match quality metric (Euclidean distance) used within a Vector quantizer (VQ) classification algorithm. This greatly reduces the redundancy in such databases while retaining classification performance. Such clusters can be useful in template-based algorithms where groups of signatures are averaged to produce a template. Instead of basing the group of signatures to be averaged on arbitrary regions of viewing aspect, the averages are taken over the signatures contained in the natural clusters which have been Identified. The benefits of applying natural cluster identification to individual-signature HRR data preparation are decreased algorithm memory and computational requirements with a consequent decrease in the time required to perform identification calculations. When applied to template databases the benefits are improved identification performance. This paper describes the techniques used for identifying HRR signature clusters and describes the statistical properties of such clusters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无监督聚类算法在高距离分辨率雷达飞机识别中的应用
从高距离分辨率(HRR)雷达距离像识别飞机需要一个信息数据库,该数据库捕获了单个距离像作为观测方向函数的变化。该数据库可以是单个签名的集合,也可以是分布在感兴趣的查看方面的区域上的平均签名的集合。一个高效的数据库能够捕获HRR签名的内在可变性,既不会出现单签名数据库中常见的过度冗余(过度描述),也不会在对任意一组签名进行平均时出现常见的信息丢失(特征描述不足)。识别类似HRR签名的“自然”聚类为创建单个签名或签名模板的高效数据库提供了一种方法。使用k-means和Kohonen自组织特征网络,我们基于匹配质量度量(欧氏距离)在矢量量化(VQ)分类算法中识别出HRR雷达距离轮廓的自然聚类成相似特征组。这在保留分类性能的同时大大减少了此类数据库中的冗余。这种聚类在基于模板的算法中非常有用,在这种算法中,对签名组进行平均以生成模板。而不是基于一组签名被平均在任意区域的观察方面,平均采取的特征包含在自然集群已被识别。将自然集群识别应用于个人签名HRR数据准备的好处是减少了算法内存和计算需求,从而减少了执行识别计算所需的时间。当应用于模板数据库时,其好处是提高了识别性能。本文描述了用于识别HRR签名集群的技术,并描述了此类集群的统计特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrating Chip Carrier Packaging Technology Into Avionic Systems Aircraft Avionics Cooling, Present And Future Aerospace Computers In The 1980s Failure Detection Without Excessive Hardware Redundancy Interface Design Considerations for F-16 Sensors and Weapons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1