Sentiment Classification of Russian Texts Using Automatically Generated Thesaurus

K. Lagutina, V. Larionov, V. Petryakov, N. Lagutina, I. Paramonov
{"title":"Sentiment Classification of Russian Texts Using Automatically Generated Thesaurus","authors":"K. Lagutina, V. Larionov, V. Petryakov, N. Lagutina, I. Paramonov","doi":"10.23919/FRUCT.2018.8588096","DOIUrl":null,"url":null,"abstract":"This paper is devoted to an approach for sentiment classification of Russian texts applying an automatic thesaurus of the subject area. This approach consists of a standard machine learning classifier and a procedure embedded into it, that uses thesaurus relationships for better sentiment analysis. The thesaurus is generated fully automatically and does not require expert’s involvement into classification process. Experiments conducted with the approach and four Russian-language text corpora, show effectiveness of thesaurus application to sentiment classification.","PeriodicalId":183812,"journal":{"name":"2018 23rd Conference of Open Innovations Association (FRUCT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 23rd Conference of Open Innovations Association (FRUCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/FRUCT.2018.8588096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper is devoted to an approach for sentiment classification of Russian texts applying an automatic thesaurus of the subject area. This approach consists of a standard machine learning classifier and a procedure embedded into it, that uses thesaurus relationships for better sentiment analysis. The thesaurus is generated fully automatically and does not require expert’s involvement into classification process. Experiments conducted with the approach and four Russian-language text corpora, show effectiveness of thesaurus application to sentiment classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用自动生成词库的俄语文本情感分类
本文研究了一种基于主题领域自动词库的俄语文本情感分类方法。这种方法由一个标准的机器学习分类器和一个嵌入其中的程序组成,该程序使用同义词库关系进行更好的情感分析。同义词典是完全自动生成的,不需要专家参与分类过程。用该方法和四种俄文文本语料库进行了实验,验证了词库应用于情感分类的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Variable Actuation Modes in Parallel Manipulators: Impact on the Stiffness Behavior Improving Content Based Video Retrieval Performance by Using Hadoop-MapReduce Model Smartphone-Oriented Development of Video Data Based Services Design Of Specialized Storage for Heterogeneous Project Data Formalization and Automated Detection of Tourist City Center Location
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1