{"title":"Scaling Linear Algebra Kernels Using Remote Memory Access","authors":"M. Krishnan, R. Lewis, Abhinav Vishnu","doi":"10.1109/ICPPW.2010.57","DOIUrl":null,"url":null,"abstract":"This paper describes the scalability of linear algebra kernels based on remote memory access approach. The current approach differs from the other linear algebra algorithms by the explicit use of shared memory and remote memory access (RMA) communication rather than message passing. It is suitable for clusters and scalable shared memory systems. The experimental results on large scale systems (Linux-Infiniband cluster, Cray XT) demonstrate consistent performance advantages over ScaLAPACK suite, the leading implementation of parallel linear algebra algorithms used today. For example, on a Cray XT4 for a matrix size of 102400, our RMA-based matrix multiplication achieved over 55 tera???ops while ScaLAPACK’s pdgemm measured close to 42 tera???ops on 10000 processes.","PeriodicalId":415472,"journal":{"name":"2010 39th International Conference on Parallel Processing Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 39th International Conference on Parallel Processing Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPPW.2010.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper describes the scalability of linear algebra kernels based on remote memory access approach. The current approach differs from the other linear algebra algorithms by the explicit use of shared memory and remote memory access (RMA) communication rather than message passing. It is suitable for clusters and scalable shared memory systems. The experimental results on large scale systems (Linux-Infiniband cluster, Cray XT) demonstrate consistent performance advantages over ScaLAPACK suite, the leading implementation of parallel linear algebra algorithms used today. For example, on a Cray XT4 for a matrix size of 102400, our RMA-based matrix multiplication achieved over 55 tera???ops while ScaLAPACK’s pdgemm measured close to 42 tera???ops on 10000 processes.