Analisa Struktur Dependensi Variabe Pembentukan Asuransi Pertanian Berbasis Indeks Cuaca dengan Multivariat Copula dan Vine Copula

A. Hidayat
{"title":"Analisa Struktur Dependensi Variabe Pembentukan Asuransi Pertanian Berbasis Indeks Cuaca dengan Multivariat Copula dan Vine Copula","authors":"A. Hidayat","doi":"10.30812/varian.v3i1.485","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to analyze the structure of the dependency on variables for calculation of insurance based on weather indices such as crop prices, yields, and rainfall. The object of research observation was secondary data on the sub-district of Dlingo Bantul District. In analyzing the dependency of variables that can be used in agricultural insurance calculations, it can be seen that both using multivariate copula and vine copula have the same results. A multivariate copula that directly looks at dependency relationships between three variables. Whereas copula vine can see the size values ​​of the variable pair dependency for each edge in the copula vine tree. In more detail the best dependency for the grain price and rainfall variable is Copula Joe with the parameter θ = 1.76. correlation τ = 0.3. The best dependency between rainfall and yield is Frank Copula with parameters θ = 4.98 and correlation τ = 0.46. The best dependency between rainfall and yield is Frank copula with parameters θ = 2.42 and correlation τ = 0.25.","PeriodicalId":188119,"journal":{"name":"Jurnal Varian","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Varian","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/varian.v3i1.485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The purpose of this study is to analyze the structure of the dependency on variables for calculation of insurance based on weather indices such as crop prices, yields, and rainfall. The object of research observation was secondary data on the sub-district of Dlingo Bantul District. In analyzing the dependency of variables that can be used in agricultural insurance calculations, it can be seen that both using multivariate copula and vine copula have the same results. A multivariate copula that directly looks at dependency relationships between three variables. Whereas copula vine can see the size values ​​of the variable pair dependency for each edge in the copula vine tree. In more detail the best dependency for the grain price and rainfall variable is Copula Joe with the parameter θ = 1.76. correlation τ = 0.3. The best dependency between rainfall and yield is Frank Copula with parameters θ = 4.98 and correlation τ = 0.46. The best dependency between rainfall and yield is Frank copula with parameters θ = 2.42 and correlation τ = 0.25.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分析基于气候因素的农业保险与多变量coalso和Vine co挂上的农作物保险结构
本研究的目的是分析基于农作物价格、产量和降雨量等天气指数计算保险时对变量的依赖结构。研究观察对象为德林戈班图尔区街道的二手资料。在分析农业保险计算中可以使用的变量的相关性时,可以看到,使用多元copula和藤copula都有相同的结果。直接观察三个变量之间依赖关系的多元联结公式。而copula vine可以看到copula vine树中每条边的变量对依赖的大小值。更详细地说,粮食价格和降雨变量的最佳依赖关系是Copula Joe,参数θ = 1.76。相关系数τ = 0.3。降雨量与产量之间的相关性为Frank Copula,参数θ = 4.98,相关系数τ = 0.46。降雨量与产量之间的关系为Frank copula,参数θ = 2.42,相关系数τ = 0.25。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Principal Component Regression in Analyzing Factors Affecting Human Development Index Impact of SST Anomalies on Coral Reefs Damage Based on Copula Analysis The NADI Mathematical Model on the Danger Level of the Bili-Bili Dam Regression Model of Land Area and Amount of Production to the Selling Price of Corn K-Means – Resilient Backpropagation Neural Network in Predicting Poverty Levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1