Disentangled Speech Representation Learning for One-Shot Cross-Lingual Voice Conversion Using ß-VAE

Hui Lu, Disong Wang, Xixin Wu, Zhiyong Wu, Xunying Liu, Helen M. Meng
{"title":"Disentangled Speech Representation Learning for One-Shot Cross-Lingual Voice Conversion Using ß-VAE","authors":"Hui Lu, Disong Wang, Xixin Wu, Zhiyong Wu, Xunying Liu, Helen M. Meng","doi":"10.1109/SLT54892.2023.10022787","DOIUrl":null,"url":null,"abstract":"We propose an unsupervised learning method to disentangle speech into content representation and speaker identity representation. We apply this method to the challenging one-shot cross-lingual voice conversion task to demonstrate the effectiveness of the disentanglement. Inspired by ß- VAE, we introduce a learning objective that balances between the information captured by the content and speaker representations. In addition, the inductive biases from the architectural design and the training dataset further encourage the desired disentanglement. Both objective and subjective evaluations show the effectiveness of the proposed method in speech disentanglement and in one-shot cross-lingual voice conversion.","PeriodicalId":352002,"journal":{"name":"2022 IEEE Spoken Language Technology Workshop (SLT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT54892.2023.10022787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose an unsupervised learning method to disentangle speech into content representation and speaker identity representation. We apply this method to the challenging one-shot cross-lingual voice conversion task to demonstrate the effectiveness of the disentanglement. Inspired by ß- VAE, we introduce a learning objective that balances between the information captured by the content and speaker representations. In addition, the inductive biases from the architectural design and the training dataset further encourage the desired disentanglement. Both objective and subjective evaluations show the effectiveness of the proposed method in speech disentanglement and in one-shot cross-lingual voice conversion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ß-VAE的单次跨语言语音转换解纠缠语音表示学习
我们提出了一种无监督学习方法,将语音分解为内容表征和说话人身份表征。我们将该方法应用于具有挑战性的一次性跨语言语音转换任务,以证明解纠缠的有效性。受ß- VAE的启发,我们引入了一个学习目标,在内容捕获的信息和说话者表示之间取得平衡。此外,来自架构设计和训练数据集的归纳偏差进一步鼓励期望的解纠缠。客观评价和主观评价均表明了该方法在语音解纠缠和一次性跨语言语音转换方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phone-Level Pronunciation Scoring for L1 Using Weighted-Dynamic Time Warping The Clever Hans Effect in Voice Spoofing Detection A Multi-Modal Array of Interpretable Features to Evaluate Language and Speech Patterns in Different Neurological Disorders Unsupervised Domain Adaptation of Neural PLDA Using Segment Pairs for Speaker Verification Learning Accent Representation with Multi-Level VAE Towards Controllable Speech Synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1