Towards light-compensated saliency prediction for omnidirectional images

Sourodeep Biswas, Sid Ahmed Fezza, M. Larabi
{"title":"Towards light-compensated saliency prediction for omnidirectional images","authors":"Sourodeep Biswas, Sid Ahmed Fezza, M. Larabi","doi":"10.1109/IPTA.2017.8310119","DOIUrl":null,"url":null,"abstract":"Omnidirectional or 360-degree images is becoming very popular in many applications and several challenges are raised because of the nature and the representation of the data. The saliency prediction for such a content opens the door to many problems linked to the geometric distortions, lighting variation, … In this paper, we propose a saliency model taking advantage of the large literature of 2D saliency and offering three major adjustments related to the nature of 360-degree images : 1) illumination normalization to account for the variability of lighting over the scene, 2) distortion compensation to handle the conversion problem from the sphere to the equi-rectangular representation, and 3) equator bias to incorporate the perceptual property according to which the human gaze is biased towards the equator line. The obtained results showed an improvement of the performance of the 2D saliency when using the above adjustments for omnidirectional images.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Omnidirectional or 360-degree images is becoming very popular in many applications and several challenges are raised because of the nature and the representation of the data. The saliency prediction for such a content opens the door to many problems linked to the geometric distortions, lighting variation, … In this paper, we propose a saliency model taking advantage of the large literature of 2D saliency and offering three major adjustments related to the nature of 360-degree images : 1) illumination normalization to account for the variability of lighting over the scene, 2) distortion compensation to handle the conversion problem from the sphere to the equi-rectangular representation, and 3) equator bias to incorporate the perceptual property according to which the human gaze is biased towards the equator line. The obtained results showed an improvement of the performance of the 2D saliency when using the above adjustments for omnidirectional images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全向图像的光补偿显著性预测
全方位或360度图像在许多应用中变得非常流行,并且由于数据的性质和表示而提出了一些挑战。这种内容的显著性预测为许多与几何扭曲、光照变化相关的问题打开了大门……在本文中,我们提出了一个显著性模型,利用了大量关于2D显著性的文献,并提供了与360度图像性质相关的三个主要调整:1)照明归一化,以考虑场景中照明的可变性;2)失真补偿,以处理从球体到等矩形表示的转换问题;3)赤道偏置,以纳入人类视线偏向赤道线的感知特性。结果表明,对全向图像进行上述调整后,二维显著性的性能得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated quantification of retinal vessel morphometry in the UK biobank cohort Deep learning for automatic sale receipt understanding Illumination-robust multispectral demosaicing Completed local structure patterns on three orthogonal planes for dynamic texture recognition Single object tracking using offline trained deep regression networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1