CuSP: A Customizable Streaming Edge Partitioner for Distributed Graph Analytics

Loc Hoang, Roshan Dathathri, G. Gill, K. Pingali
{"title":"CuSP: A Customizable Streaming Edge Partitioner for Distributed Graph Analytics","authors":"Loc Hoang, Roshan Dathathri, G. Gill, K. Pingali","doi":"10.1109/IPDPS.2019.00054","DOIUrl":null,"url":null,"abstract":"Graph analytics systems must analyze graphs with billions of vertices and edges which require several terabytes of storage. Distributed-memory clusters are often used for analyzing such large graphs since the main memory of a single machine is usually restricted to a few hundreds of gigabytes. This requires partitioning the graph among the machines in the cluster. Existing graph analytics systems usually come with a built-in partitioner that incorporates a particular partitioning policy, but the best partitioning policy is dependent on the algorithm, input graph, and platform. Therefore, built-in partitioners are not sufficiently flexible. Stand-alone graph partitioners are available, but they too implement only a small number of partitioning policies. This paper presents CuSP, a fast streaming edge partitioning framework which permits users to specify the desired partitioning policy at a high level of abstraction and generates high-quality graph partitions fast. For example, it can partition wdc12, the largest publicly available web-crawl graph, with 4 billion vertices and 129 billion edges, in under 2 minutes for clusters with 128 machines. Our experiments show that it can produce quality partitions 6× faster on average than the state-of-the-art stand-alone partitioner in the literature while supporting a wider range of partitioning policies.","PeriodicalId":403406,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2019.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Graph analytics systems must analyze graphs with billions of vertices and edges which require several terabytes of storage. Distributed-memory clusters are often used for analyzing such large graphs since the main memory of a single machine is usually restricted to a few hundreds of gigabytes. This requires partitioning the graph among the machines in the cluster. Existing graph analytics systems usually come with a built-in partitioner that incorporates a particular partitioning policy, but the best partitioning policy is dependent on the algorithm, input graph, and platform. Therefore, built-in partitioners are not sufficiently flexible. Stand-alone graph partitioners are available, but they too implement only a small number of partitioning policies. This paper presents CuSP, a fast streaming edge partitioning framework which permits users to specify the desired partitioning policy at a high level of abstraction and generates high-quality graph partitions fast. For example, it can partition wdc12, the largest publicly available web-crawl graph, with 4 billion vertices and 129 billion edges, in under 2 minutes for clusters with 128 machines. Our experiments show that it can produce quality partitions 6× faster on average than the state-of-the-art stand-alone partitioner in the literature while supporting a wider range of partitioning policies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CuSP:一个可定制的分布式图分析流边缘分区器
图形分析系统必须分析具有数十亿个顶点和边的图形,这需要数tb的存储空间。分布式内存集群通常用于分析如此大的图,因为单个机器的主内存通常限制在几百gb。这需要在集群中的机器之间划分图。现有的图分析系统通常带有内置的分区器,该分区器包含特定的分区策略,但是最佳的分区策略取决于算法、输入图和平台。因此,内置分区程序不够灵活。独立的图分区器是可用的,但是它们也只实现少量的分区策略。本文提出了一种快速流边缘分区框架CuSP,它允许用户在高抽象级别指定所需的分区策略,并快速生成高质量的图分区。例如,对于拥有128台机器的集群,它可以在2分钟内对wdc12进行分区,wdc12是公开可用的最大的网络爬行图,具有40亿个顶点和1290亿个边。我们的实验表明,它可以生成高质量的分区,平均速度比文献中最先进的独立分区器快6倍,同时支持更广泛的分区策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed Weighted All Pairs Shortest Paths Through Pipelining SAFIRE: Scalable and Accurate Fault Injection for Parallel Multithreaded Applications Architecting Racetrack Memory Preshift through Pattern-Based Prediction Mechanisms Z-Dedup:A Case for Deduplicating Compressed Contents in Cloud Dual Pattern Compression Using Data-Preprocessing for Large-Scale GPU Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1