An information theoretic rule for sample size adaptation in particle filtering

O. Lanz
{"title":"An information theoretic rule for sample size adaptation in particle filtering","authors":"O. Lanz","doi":"10.1109/ICIAP.2007.23","DOIUrl":null,"url":null,"abstract":"To become robust, a tracking algorithm must be able to support uncertainty and ambiguity often inherently present in the data in form of occlusion and clutter. This comes usually at the price of more demanding computations. Sampling methods, such as the popular particle filter, accommodate this capability and provide a means of controlling the computational trade-off by adapting their resolution. This paper presents a method for adapting resolution on-the-fly to current demands. The key idea is to select the number of samples necessary to populate the high probability regions with a predefined density. The scheme then allocates more particles when uncertainty is high while saving resources otherwise. The resulting tracker propagates compact while consistent representations and enables for reliable real time operation otherwise compromised.","PeriodicalId":118466,"journal":{"name":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2007.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

To become robust, a tracking algorithm must be able to support uncertainty and ambiguity often inherently present in the data in form of occlusion and clutter. This comes usually at the price of more demanding computations. Sampling methods, such as the popular particle filter, accommodate this capability and provide a means of controlling the computational trade-off by adapting their resolution. This paper presents a method for adapting resolution on-the-fly to current demands. The key idea is to select the number of samples necessary to populate the high probability regions with a predefined density. The scheme then allocates more particles when uncertainty is high while saving resources otherwise. The resulting tracker propagates compact while consistent representations and enables for reliable real time operation otherwise compromised.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粒子滤波中样本大小自适应的信息理论规则
为了变得健壮,跟踪算法必须能够支持不确定性和模糊性,这些不确定性和模糊性通常以遮挡和杂波的形式固有地存在于数据中。这通常是以更高的计算要求为代价的。采样方法,如流行的粒子滤波,适应了这种能力,并提供了一种通过调整分辨率来控制计算权衡的方法。本文提出了一种适应当前需求的动态分辨率方法。关键思想是选择必要的样本数量,以预定义的密度填充高概率区域。当不确定性较高时,该方案分配更多的粒子,而在其他情况下则节省资源。由此产生的跟踪器传播紧凑而一致的表示,并支持可靠的实时操作,否则会受到损害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time Gesture Recognition in Advanced Videocommunication Services Corner Displacement from Motion Blur A Method of Clustering Combination Applied to Satellite Image Analysis Sight enhancement through video fusion in a surveillance system Robust Iris Localization and Tracking based on Constrained Visual Fitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1