Application of an Advanced Meta Model Selection Algorithm on the Sensitivity Analysis of a Cooled Turbine Blade

Florian Diermeier, M. Voigt, R. Mailach, M. Meyer
{"title":"Application of an Advanced Meta Model Selection Algorithm on the Sensitivity Analysis of a Cooled Turbine Blade","authors":"Florian Diermeier, M. Voigt, R. Mailach, M. Meyer","doi":"10.1115/gt2022-83123","DOIUrl":null,"url":null,"abstract":"\n Probabilistic methods are growing more important in the aerospace industry due to the ability to describe the behaviour of complex systems in the presence of input parameter variance. Sensitivity analysis based on meta models can be utilized for this purpose. The reliability of the results is dependent on the surrogate model quality, which in turn depends on the available data. A priori the appropriate meta model type is not known.\n An approach to automatically select the best fitting model for a given data set is presented in this paper. For comparison, polynomial regression with least squares fitting, moving least squares, radial basis functions, and support vector regression are used as candidate types. The selection of the best meta model type is based on two quality criteria utilizing a cross-validation (CV) scheme. The developed approach is demonstrated on the sensitivity analysis of a cooled turbine blade.","PeriodicalId":171593,"journal":{"name":"Volume 8B: Structures and Dynamics — Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8B: Structures and Dynamics — Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2022-83123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Probabilistic methods are growing more important in the aerospace industry due to the ability to describe the behaviour of complex systems in the presence of input parameter variance. Sensitivity analysis based on meta models can be utilized for this purpose. The reliability of the results is dependent on the surrogate model quality, which in turn depends on the available data. A priori the appropriate meta model type is not known. An approach to automatically select the best fitting model for a given data set is presented in this paper. For comparison, polynomial regression with least squares fitting, moving least squares, radial basis functions, and support vector regression are used as candidate types. The selection of the best meta model type is based on two quality criteria utilizing a cross-validation (CV) scheme. The developed approach is demonstrated on the sensitivity analysis of a cooled turbine blade.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种先进的元模型选择算法在冷却涡轮叶片灵敏度分析中的应用
概率方法在航空航天工业中变得越来越重要,因为它能够描述存在输入参数方差的复杂系统的行为。基于元模型的敏感性分析可用于此目的。结果的可靠性取决于代理模型的质量,而代理模型的质量又取决于可用的数据。先验地,适当的元模型类型是未知的。提出了一种针对给定数据集自动选择最佳拟合模型的方法。为了比较,最小二乘拟合多项式回归、移动最小二乘、径向基函数和支持向量回归被用作候选类型。最佳元模型类型的选择是基于使用交叉验证(CV)方案的两个质量标准。通过对某冷却涡轮叶片的灵敏度分析,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Feasibility Analysis of the Rotor Elastic Support With Piezoelectric Damping Measured and Predicted Temperature Differentials Within a Rotor at a Tilting-Pad-Journal Bearing Associated With the Morton Effect Gradient Enhanced Kriging Using Modal Sensitivity Approximations in a Reduced Basis Space for As-Manufactured Airfoil Analysis Vibration Failure Analysis of Multi-Disk High-Speed Rotor Based on Rotary Inertia Load Model Accurate Blade Tip Timing Placement on a Centrifugal Impeller Using As-Manufactured Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1