A biologically inspired approach to learning spatio-temporal patterns

Banafsheh Rekabdar, M. Nicolescu, M. Nicolescu, Richard Kelley
{"title":"A biologically inspired approach to learning spatio-temporal patterns","authors":"Banafsheh Rekabdar, M. Nicolescu, M. Nicolescu, Richard Kelley","doi":"10.1109/DEVLRN.2015.7346159","DOIUrl":null,"url":null,"abstract":"This paper presents an unsupervised approach for learning and classifying patterns that have spatio-temporal structure, using a spike-timing neural network with axonal conductance delays, from a very small set of training samples. Spatio-temporal patterns are converted into spike trains, which can be used to train the network with spike-timing dependent plasticity learning. A pattern is encoded as a string of “characters,” in which each character is a set of neurons that fired at a particular time step, as a result of the network being stimulated with the corresponding input. For classification we compute a similarity measure between a new sample and the training examples, based on the longest common subsequence dynamic programming algorithm to develop a fully unsupervised approach. The approach is tested on a dataset of hand-written digits, which include spatial and temporal information, with results comparable with other state-of-the-art supervised learning approaches.","PeriodicalId":164756,"journal":{"name":"2015 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2015.7346159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents an unsupervised approach for learning and classifying patterns that have spatio-temporal structure, using a spike-timing neural network with axonal conductance delays, from a very small set of training samples. Spatio-temporal patterns are converted into spike trains, which can be used to train the network with spike-timing dependent plasticity learning. A pattern is encoded as a string of “characters,” in which each character is a set of neurons that fired at a particular time step, as a result of the network being stimulated with the corresponding input. For classification we compute a similarity measure between a new sample and the training examples, based on the longest common subsequence dynamic programming algorithm to develop a fully unsupervised approach. The approach is tested on a dataset of hand-written digits, which include spatial and temporal information, with results comparable with other state-of-the-art supervised learning approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习时空模式的生物学启发方法
本文提出了一种无监督的方法,用于学习和分类具有时空结构的模式,使用具有轴突电导延迟的峰值定时神经网络,从非常小的训练样本集。将时空模式转化为脉冲序列,利用脉冲时间依赖的可塑性学习训练神经网络。一种模式被编码成一串“字符”,其中每个字符都是一组神经元,它们在特定的时间步被激活,这是网络受到相应输入刺激的结果。对于分类,我们基于最长公共子序列动态规划算法,计算新样本与训练样本之间的相似性度量,从而开发出一种完全无监督的方法。该方法在手写数字数据集上进行了测试,其中包括空间和时间信息,结果与其他最先进的监督学习方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The sequential organization of movement is critical to the development of reaching: A neural dynamics account Incremental grounded language learning in robot-robot interactions — Examples from spatial language A learning model for essentialist concepts Biological and simulated neuronal networks show similar competence on a visual tracking task A Deep Learning Neural Network for Number Cognition: A bi-cultural study with the iCub
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1