How to cultivate a green decision tree without loss of accuracy?

Tseng-Yi Chen, Yuan-Hao Chang, Ming-Chang Yang, Huang-wei Chen
{"title":"How to cultivate a green decision tree without loss of accuracy?","authors":"Tseng-Yi Chen, Yuan-Hao Chang, Ming-Chang Yang, Huang-wei Chen","doi":"10.1145/3370748.3406566","DOIUrl":null,"url":null,"abstract":"Decision tree is the core algorithm of the random forest learning that has been widely applied to classification and regression problems in the machine learning field. For avoiding underfitting, a decision tree algorithm will stop growing its tree model when the model is a fully-grown tree. However, a fully-grown tree will result in an overfitting problem reducing the accuracy of a decision tree. In such a dilemma, some post-pruning strategies have been proposed to reduce the model complexity of the fully-grown decision tree. Nevertheless, such a process is very energy-inefficiency over an non-volatile-memory-based (NVM-based) system because NVM generally have high writing costs (i.e., energy consumption and I/O latency). Such unnecessary data will induce high writing energy consumption and long I/O latency on NVM-based architectures, especially for low-power-oriented embedded systems. In order to establish a green decision tree (i.e., a tree model with minimized construction energy consumption), this study rethinks a pruning algorithm, namely duo-phase pruning framework, which can significantly decrease the energy consumption on the NVM-based computing system without loss of accuracy.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3370748.3406566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Decision tree is the core algorithm of the random forest learning that has been widely applied to classification and regression problems in the machine learning field. For avoiding underfitting, a decision tree algorithm will stop growing its tree model when the model is a fully-grown tree. However, a fully-grown tree will result in an overfitting problem reducing the accuracy of a decision tree. In such a dilemma, some post-pruning strategies have been proposed to reduce the model complexity of the fully-grown decision tree. Nevertheless, such a process is very energy-inefficiency over an non-volatile-memory-based (NVM-based) system because NVM generally have high writing costs (i.e., energy consumption and I/O latency). Such unnecessary data will induce high writing energy consumption and long I/O latency on NVM-based architectures, especially for low-power-oriented embedded systems. In order to establish a green decision tree (i.e., a tree model with minimized construction energy consumption), this study rethinks a pruning algorithm, namely duo-phase pruning framework, which can significantly decrease the energy consumption on the NVM-based computing system without loss of accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
如何培育绿色决策树而不损失其准确性?
决策树是随机森林学习的核心算法,已广泛应用于机器学习领域的分类和回归问题。为了避免欠拟合,决策树算法将在模型是完全成熟的树时停止生长其树模型。然而,成熟的树会导致过拟合问题,降低决策树的准确性。在这种困境下,人们提出了一些后修剪策略来降低完全生长决策树的模型复杂性。然而,与基于非易失性存储器(NVM)的系统相比,这样的过程非常节能,因为NVM通常具有高写入成本(即能耗和I/O延迟)。在基于nvm的架构上,这些不必要的数据将导致高写入能耗和长I/O延迟,特别是对于面向低功耗的嵌入式系统。为了建立绿色决策树(即建筑能耗最小的树模型),本研究重新思考了一种剪枝算法,即两阶段剪枝框架,该算法可以在不损失精度的情况下显著降低基于nvm的计算系统的能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Domain-Specific System-On-Chip Design for Energy Efficient Wearable Edge AI Applications HOGEye: Neural Approximation of HOG Feature Extraction in RRAM-Based 3D-Stacked Image Sensors Improving Performance and Power by Co-Optimizing Middle-of-Line Routing, Pin Pattern Generation, and Contact over Active Gates in Standard Cell Layout Synthesis Exploiting successive identical words and differences with dynamic bases for effective compression in Non-Volatile Memories Canopy: A CNFET-based Process Variation Aware Systolic DNN Accelerator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1