Blind separation of convolutive mixtures of speech signals using linear combination model

M. Ohata, T. Mukai, K. Matsuoka
{"title":"Blind separation of convolutive mixtures of speech signals using linear combination model","authors":"M. Ohata, T. Mukai, K. Matsuoka","doi":"10.1109/ISSPA.2005.1580189","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a blind separation algorithm for convolutive mixture of source signals on the basis of the information-theoretical approach. This approach requires distribution models of the sources. It is difficult to select the models without prior knowledge of sources. In order to resolve the difficulty, we introduce a distribution model with parameters. We construct the parametric model by linearly combining two density functions corresponding to sub- and super-Gaussian distributions. Our algorithm adaptively estimates the parameters and designs a separat- ing filter. We applied the algorithm to convolutive mix- tures of two speeches in a real environment. The result of our experiments shows that our algorithm can improve separation performance.","PeriodicalId":385337,"journal":{"name":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2005.1580189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a blind separation algorithm for convolutive mixture of source signals on the basis of the information-theoretical approach. This approach requires distribution models of the sources. It is difficult to select the models without prior knowledge of sources. In order to resolve the difficulty, we introduce a distribution model with parameters. We construct the parametric model by linearly combining two density functions corresponding to sub- and super-Gaussian distributions. Our algorithm adaptively estimates the parameters and designs a separat- ing filter. We applied the algorithm to convolutive mix- tures of two speeches in a real environment. The result of our experiments shows that our algorithm can improve separation performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于线性组合模型的语音信号卷积混合的盲分离
本文提出了一种基于信息论方法的卷积混合源信号盲分离算法。这种方法需要源的分布模型。如果没有对来源的先验知识,很难选择模型。为了解决这一难题,我们引入了带参数的分布模型。我们通过线性组合对应于亚高斯分布和超高斯分布的两个密度函数来构造参数模型。该算法自适应估计参数并设计分离滤波器。我们将该算法应用于真实环境中两个语音的卷积混合。实验结果表明,该算法可以提高分离性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Urban site path loss prediction for mobile communications employing stratospheric platforms Mask constrained beam pattern synthesis for large arrays Neural network approaches to nonlinear blind source separation On the design of equiripple multidimensional FIR digital filters Improved Huffman code tables for H.263/H.263+ based video compression applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1