An Evaluation of Low-Cost Self-Localization Service Exploiting Angle of Arrival for Industrial Cyber-Physical Systems

S. Rinaldi, P. Ferrari, E. Sisinni, A. Depari, A. Flammini
{"title":"An Evaluation of Low-Cost Self-Localization Service Exploiting Angle of Arrival for Industrial Cyber-Physical Systems","authors":"S. Rinaldi, P. Ferrari, E. Sisinni, A. Depari, A. Flammini","doi":"10.1109/africon51333.2021.9570985","DOIUrl":null,"url":null,"abstract":"During the last years, the industrial automation field was radically revolutionized by Industry 4.0 paradigm. The possibility to interconnect industrial machinery to the cyber world through Cyber Physical System (CPS) enables innovative services, but open new challenges on communication and data management sides. In fact, it is important to identify not only which CPS generated an information, but also where it is located on the production plant, since the configuration of the automation could dynamically change in function of the product being produced. In our research work, a low-cost (and low power) approach for the estimation of the relative position of CPS in industrial plant has been investigated. The proposed solution exploits the Direction Finding service introduced by Bluetooth 5.0. The Angle of Arrival (AoA) method in connection-less mode is used to estimate the angle between a tag and the receiving anchors. In this way, the computational power (and, the relative power consumption) of the tag is limited. The preliminary characterization of this solution shows as the maximum error angle is about 5° at a distance of 4 m between anchor and tag. This result is promising, although the application of the BLE Direction Finding service requires a careful design of the array of antennas and of its radiation pattern to allow a proper localization in the three-dimensional space.","PeriodicalId":170342,"journal":{"name":"2021 IEEE AFRICON","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE AFRICON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/africon51333.2021.9570985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

During the last years, the industrial automation field was radically revolutionized by Industry 4.0 paradigm. The possibility to interconnect industrial machinery to the cyber world through Cyber Physical System (CPS) enables innovative services, but open new challenges on communication and data management sides. In fact, it is important to identify not only which CPS generated an information, but also where it is located on the production plant, since the configuration of the automation could dynamically change in function of the product being produced. In our research work, a low-cost (and low power) approach for the estimation of the relative position of CPS in industrial plant has been investigated. The proposed solution exploits the Direction Finding service introduced by Bluetooth 5.0. The Angle of Arrival (AoA) method in connection-less mode is used to estimate the angle between a tag and the receiving anchors. In this way, the computational power (and, the relative power consumption) of the tag is limited. The preliminary characterization of this solution shows as the maximum error angle is about 5° at a distance of 4 m between anchor and tag. This result is promising, although the application of the BLE Direction Finding service requires a careful design of the array of antennas and of its radiation pattern to allow a proper localization in the three-dimensional space.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工业信息物理系统低成本自定位服务开发切入点评价
在过去的几年里,工业自动化领域被工业4.0范式彻底改变了。通过网络物理系统(CPS)将工业机械与网络世界互联的可能性实现了创新服务,但在通信和数据管理方面带来了新的挑战。事实上,重要的是不仅要确定哪个CPS生成了信息,还要确定它在生产工厂中的位置,因为自动化的配置可以动态地改变所生产产品的功能。在我们的研究工作中,研究了一种低成本(和低功耗)的方法来估计工业厂房中CPS的相对位置。该方案利用了蓝牙5.0引入的测向服务。采用无连接模式下的到达角(AoA)方法来估计标签与接收锚点之间的角度。这样,标签的计算能力(以及相对功耗)就受到了限制。该方案的初步表征表明,在锚点与标签距离4m处,最大误差角约为5°。这个结果是有希望的,尽管应用BLE测向服务需要仔细设计天线阵列及其辐射方向图,以便在三维空间中进行适当的定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Sensory Overstimulation in UE Usage IEEE AFRICON 2021 [Copyright notice] Mobile Application for Gate Pass Management System Enhancement Wireless sensor network for water pipe corrosion monitoring Metasurface based MIMO Microstrip Antenna with Reduced Mutual Coupling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1