Choosing the structure of convolutional neural networks for face recognition

K. Khudaybergenov
{"title":"Choosing the structure of convolutional neural networks for face recognition","authors":"K. Khudaybergenov","doi":"10.56017/2181-1318.1050","DOIUrl":null,"url":null,"abstract":"Evaluating the number of hidden neurons and hidden layers necessary for solving of face recognition, pattern recognition and classi cation tasks is one of the key problems in arti cial neural networks. In this note, we show that arti cial neural network with a two hidden layer feed forward neural network with d inputs, d neurons in the rst hidden layer, 2d+2 neurons in the second hidden layer, k outputs and with a sigmoidal in nitely di erentiable function can solve face recognition tasks. This result can be applied to design pattern recognition and classi cation models with optimal structure in the number of hidden neurons and hidden layers. In addition, we propose a new type of convolutional neural network, which is capable to extract most powerful features. The experimental results over well-known benchmark datasets shows that the convergence and the accuracy of the proposed model of arti cial neural network is acceptable. Findings in this paper are experimentally analyzed on ve di erent face datasets from machine learning repository.","PeriodicalId":127023,"journal":{"name":"Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56017/2181-1318.1050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Evaluating the number of hidden neurons and hidden layers necessary for solving of face recognition, pattern recognition and classi cation tasks is one of the key problems in arti cial neural networks. In this note, we show that arti cial neural network with a two hidden layer feed forward neural network with d inputs, d neurons in the rst hidden layer, 2d+2 neurons in the second hidden layer, k outputs and with a sigmoidal in nitely di erentiable function can solve face recognition tasks. This result can be applied to design pattern recognition and classi cation models with optimal structure in the number of hidden neurons and hidden layers. In addition, we propose a new type of convolutional neural network, which is capable to extract most powerful features. The experimental results over well-known benchmark datasets shows that the convergence and the accuracy of the proposed model of arti cial neural network is acceptable. Findings in this paper are experimentally analyzed on ve di erent face datasets from machine learning repository.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
选择卷积神经网络的结构用于人脸识别
评估解决人脸识别、模式识别和分类任务所需的隐藏神经元和隐藏层的数量是人工神经网络的关键问题之一。在这篇文章中,我们展示了具有两个隐藏层前馈神经网络的人工神经网络,其中d个输入,第一个隐藏层有d个神经元,第二层隐藏层有2d+2个神经元,k个输出,并具有一个s型的可微函数,可以解决人脸识别任务。该结果可用于设计具有最优隐藏神经元数和隐藏层数结构的模式识别和分类模型。此外,我们提出了一种新型的卷积神经网络,它能够提取最强大的特征。在知名基准数据集上的实验结果表明,所提出的人工神经网络模型的收敛性和精度是可以接受的。本文的研究结果在机器学习存储库中的五种不同的人脸数据集上进行了实验分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ASYMPTOTIC RESULTS FOR EMPIRICAL PROCESSES IN INFORMATIVE MODEL OF RANDOM CENSORSHIP FROM BOTH SIDES Local and 2-local derivations on small dimensional Zinbiel algebras On the Hartogs theorem for A-analytic functions in ℂn DUALITY FOR L1-SPACES ASSOCIATED WITH THE MAHARAM MEASURE NUMERICAL CALCULATION OF LYAPUNOV STABLE SOLUTIONS OF THE HYPERBOLIC SYSTEMS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1