A 1.15μW 5.54mm3 Implant with a Bidirectional Neural Sensor and Stimulator SoC utilizing Bi-Phasic Quasi-static Brain Communication achieving 6kbps-10Mbps Uplink with Compressive Sensing and RO-PUF based Collision Avoidance

Baibhab Chatterjee, K. G. Kumar, Mayukh Nath, Shulan Xiao, Nirmoy Modak, D. Das, Jayant Krishna, Shreyas Sen
{"title":"A 1.15μW 5.54mm3 Implant with a Bidirectional Neural Sensor and Stimulator SoC utilizing Bi-Phasic Quasi-static Brain Communication achieving 6kbps-10Mbps Uplink with Compressive Sensing and RO-PUF based Collision Avoidance","authors":"Baibhab Chatterjee, K. G. Kumar, Mayukh Nath, Shulan Xiao, Nirmoy Modak, D. Das, Jayant Krishna, Shreyas Sen","doi":"10.23919/VLSICircuits52068.2021.9492445","DOIUrl":null,"url":null,"abstract":"To solve the challenge of powering and communication in a brain implant with low end-end energy loss, we present Bi-Phasic Quasi-static Brain Communication (BP-QBC), achieving < 60dB worst-case channel loss, and ~41X lower power w.r.t. traditional Galvanic body channel communication (G-BCC) at a carrier frequency of 1MHz (~6X lower power than G-BCC at 10MHz) by blocking DC current paths through the brain tissue. An additional 16X improvement in net energy-efficiency (pJ/b) is achieved through compressive sensing (CS), allowing a scalable (6kbps-10Mbps) duty-cycled uplink (UL) from the implant to an external wearable, while reducing the active power consumption to 0.52μW at 10Mbps, i.e. within the range of harvested body-coupled power in the downlink (DL), with externally applied electric currents < 1/5th of ICNIRP safety limits. BP-QBC eliminates the need for sub-cranial interrogators, utilizing quasi-static electrical signals for end-to-end BCC, avoiding transduction losses.","PeriodicalId":106356,"journal":{"name":"2021 Symposium on VLSI Circuits","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSICircuits52068.2021.9492445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

To solve the challenge of powering and communication in a brain implant with low end-end energy loss, we present Bi-Phasic Quasi-static Brain Communication (BP-QBC), achieving < 60dB worst-case channel loss, and ~41X lower power w.r.t. traditional Galvanic body channel communication (G-BCC) at a carrier frequency of 1MHz (~6X lower power than G-BCC at 10MHz) by blocking DC current paths through the brain tissue. An additional 16X improvement in net energy-efficiency (pJ/b) is achieved through compressive sensing (CS), allowing a scalable (6kbps-10Mbps) duty-cycled uplink (UL) from the implant to an external wearable, while reducing the active power consumption to 0.52μW at 10Mbps, i.e. within the range of harvested body-coupled power in the downlink (DL), with externally applied electric currents < 1/5th of ICNIRP safety limits. BP-QBC eliminates the need for sub-cranial interrogators, utilizing quasi-static electrical signals for end-to-end BCC, avoiding transduction losses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个1.15μW 5.54mm3的植入物,利用双相准静态脑通信实现双向神经传感器和刺激器SoC,实现6kbps-10Mbps上行链路,具有压缩感知和基于RO-PUF的碰撞避免
为了解决低端-端能量损耗的脑植入物供电和通信的挑战,我们提出了双相准静态脑通信(BP-QBC),在1MHz的载波频率下(比10MHz时的G-BCC低约6倍),实现了小于60dB的最坏情况下的信道损耗和比传统电体信道通信(G-BCC)低约41倍的功率。通过压缩感知(CS)实现了16倍的净能源效率(pJ/b)提高,允许从植入物到外部可穿戴设备的可扩展(6kbps-10Mbps)占空比上行链路(UL),同时将有功功耗降低到10Mbps时的0.52μW,即在下行链路(DL)中收获的体耦合功率范围内,外部施加的电流< ICNIRP安全限制的1/5。BP-QBC消除了颅下询问器的需要,利用准静态电信号进行端到端BCC,避免了转导损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PIMCA: A 3.4-Mb Programmable In-Memory Computing Accelerator in 28nm for On-Chip DNN Inference A 24–31 GHz Reference Oversampling ADPLL Achieving FoMjitter−N of -269.3 dB A 6.78 MHz Wireless Power Transfer System for Simultaneous Charging of Multiple Receivers with Maximum Efficiency using Adaptive Magnetic Field Distributor IC Enhanced Core Circuits for scaling DRAM: 0.7V VCC with Long Retention 138ms at 125°C and Random Row/Column Access Times Accelerated by 1.5ns A Sub-mW Dual-Engine ML Inference System-on-Chip for Complete End-to-End Face-Analysis at the Edge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1