Frank C. Cabello, Julio León, Y. Iano, Rangel Arthur
{"title":"Implementation of a fixed-point 2D Gaussian Filter for Image Processing based on FPGA","authors":"Frank C. Cabello, Julio León, Y. Iano, Rangel Arthur","doi":"10.1109/SPA.2015.7365108","DOIUrl":null,"url":null,"abstract":"One of the very useful techniques in Image Processing is the 2D Gaussian Filter, especially when smoothing images. However, the implementation of a 2D Gaussian Filter requires heavy computational resources, and when it comes down to real-time applications, efficiency in the implementation is vital. Floating-point math represents an obstacle for this, as its implementation requires a large amount of computational power in order to achieve real-time image processing. On the other hand, a fixed-point approach is much more suitable; implementation of a 2D Gaussian Filter in FPGA using fixed-point arithmetic provides efficiency in the processing and reduction in computational costs. The purpose of this study is to present the FPGA resource usage for different sizes of Gaussian Kernel; to provide a comparison between fixed-point and floating point implementations; and to define the amount of bits are necessary to use in order to have a Root Mean Square Error (RMSE) below 5%.","PeriodicalId":423880,"journal":{"name":"2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPA.2015.7365108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45
Abstract
One of the very useful techniques in Image Processing is the 2D Gaussian Filter, especially when smoothing images. However, the implementation of a 2D Gaussian Filter requires heavy computational resources, and when it comes down to real-time applications, efficiency in the implementation is vital. Floating-point math represents an obstacle for this, as its implementation requires a large amount of computational power in order to achieve real-time image processing. On the other hand, a fixed-point approach is much more suitable; implementation of a 2D Gaussian Filter in FPGA using fixed-point arithmetic provides efficiency in the processing and reduction in computational costs. The purpose of this study is to present the FPGA resource usage for different sizes of Gaussian Kernel; to provide a comparison between fixed-point and floating point implementations; and to define the amount of bits are necessary to use in order to have a Root Mean Square Error (RMSE) below 5%.