{"title":"Optimization of Interval Type-2 Intuitionistic Fuzzy Logic System for Prediction Problems","authors":"Imo J. Eyoh, J. Eyoh, U. Umoh, R. Kalawsky","doi":"10.1142/s146902682150022x","DOIUrl":null,"url":null,"abstract":"Derivative-based algorithms have been adopted in the literature for the optimization of membership and non-membership function parameters of interval type-2 (T2) intuitionistic fuzzy logic systems (FLSs). In this study, a non-derivative-based algorithm called sliding mode control learning algorithm is proposed to tune the parameters of interval T2 intuitionistic FLS for the first time. The proposed rule-based learning system employs the Takagi–Sugeno–Kang inference with artificial neural network to pilot the learning process. The new learning system is evaluated using some nonlinear prediction problems. Analyses of results reveal that the proposed learning apparatus outperforms its type-1 version and many existing solutions in the literature and competes favorably with others on the investigated problem instances with low cost in terms of running time.","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Intell. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s146902682150022x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Derivative-based algorithms have been adopted in the literature for the optimization of membership and non-membership function parameters of interval type-2 (T2) intuitionistic fuzzy logic systems (FLSs). In this study, a non-derivative-based algorithm called sliding mode control learning algorithm is proposed to tune the parameters of interval T2 intuitionistic FLS for the first time. The proposed rule-based learning system employs the Takagi–Sugeno–Kang inference with artificial neural network to pilot the learning process. The new learning system is evaluated using some nonlinear prediction problems. Analyses of results reveal that the proposed learning apparatus outperforms its type-1 version and many existing solutions in the literature and competes favorably with others on the investigated problem instances with low cost in terms of running time.