Forecasting abnormal load conditions with neural networks

D. C. Park, O. Mohammed, R. Merchant, T. Dinh, C. Tong, A. Azeem, J. Farah, C. Drake
{"title":"Forecasting abnormal load conditions with neural networks","authors":"D. C. Park, O. Mohammed, R. Merchant, T. Dinh, C. Tong, A. Azeem, J. Farah, C. Drake","doi":"10.1109/ANN.1993.264346","DOIUrl":null,"url":null,"abstract":"The authors present a new approach to power load forecasting under abnormal weather conditions using artificial neural networks (ANN). Accurate forecasting for cold fronts and warm fronts is of special importance to utility companies for monetary reasons and planning reasons. Temperatures below 50 degrees F are treated as cold fronts and temperatures above 90 degrees F are treated as warm fronts in the area of interest. The architectures take into account some inherent characteristics of these days. The results obtained by using ANN have been found to give better results than other conventional techniques.<<ETX>>","PeriodicalId":121897,"journal":{"name":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1993.264346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The authors present a new approach to power load forecasting under abnormal weather conditions using artificial neural networks (ANN). Accurate forecasting for cold fronts and warm fronts is of special importance to utility companies for monetary reasons and planning reasons. Temperatures below 50 degrees F are treated as cold fronts and temperatures above 90 degrees F are treated as warm fronts in the area of interest. The architectures take into account some inherent characteristics of these days. The results obtained by using ANN have been found to give better results than other conventional techniques.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的负荷异常预测
提出了一种利用人工神经网络(ANN)进行异常天气条件下电力负荷预测的新方法。由于资金和规划的原因,对冷锋和暖锋的准确预测对公用事业公司来说尤为重要。低于50华氏度的温度被视为冷锋,高于90华氏度的温度被视为暖锋。这些架构考虑到了当今社会的一些固有特征。使用人工神经网络获得的结果比其他传统技术得到的结果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An adaptive fuzzy logic controller for AC-DC power systems Discrimination of partial discharge from noise in XLPE cable lines using a neural network Automation, with neural network based techniques, of short-term load forecasting at the Belgian national control centre Maximum electric power demand prediction by neural network Restoring current signals in real time using feedforward neural nets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1