Optically Connected Memory for Disaggregated Data Centers

Jorge González, A. Gazman, Maarten Hattink, Mauricio G. Palma, M. Bahadori, Ruth E. Rubio-Noriega, Lois Orosa, M. Glick, O. Mutlu, K. Bergman, R. Azevedo
{"title":"Optically Connected Memory for Disaggregated Data Centers","authors":"Jorge González, A. Gazman, Maarten Hattink, Mauricio G. Palma, M. Bahadori, Ruth E. Rubio-Noriega, Lois Orosa, M. Glick, O. Mutlu, K. Bergman, R. Azevedo","doi":"10.1109/SBAC-PAD49847.2020.00017","DOIUrl":null,"url":null,"abstract":"Recent advances in integrated photonics enable the implementation of reconfigurable, high-bandwidth, and low energy-per-bit interconnects in next-generation data centers. We propose and evaluate an Optically Connected Memory (OCM) architecture that disaggregates the main memory from the computation nodes in data centers. OCM is based on micro-ring resonators (MRRs), and it does not require any modification to the DRAM memory modules. We calculate energy consumption from real photonic devices and integrate them into a system simulator to evaluate performance. Our results show that (1) OCM is capable of interconnecting four DDR4 memory channels to a computing node using two fibers with 1.07 pJ energy-per-bit consumption and (2) OCM performs up to 5.5x faster than a disaggregated memory with 40G PCIe NIC connectors to computing nodes.","PeriodicalId":202581,"journal":{"name":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD49847.2020.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Recent advances in integrated photonics enable the implementation of reconfigurable, high-bandwidth, and low energy-per-bit interconnects in next-generation data centers. We propose and evaluate an Optically Connected Memory (OCM) architecture that disaggregates the main memory from the computation nodes in data centers. OCM is based on micro-ring resonators (MRRs), and it does not require any modification to the DRAM memory modules. We calculate energy consumption from real photonic devices and integrate them into a system simulator to evaluate performance. Our results show that (1) OCM is capable of interconnecting four DDR4 memory channels to a computing node using two fibers with 1.07 pJ energy-per-bit consumption and (2) OCM performs up to 5.5x faster than a disaggregated memory with 40G PCIe NIC connectors to computing nodes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于分散数据中心的光连接存储器
集成光子学的最新进展使得在下一代数据中心中实现可重构、高带宽和低能耗比特互连成为可能。我们提出并评估了一种光连接内存(OCM)架构,该架构将数据中心的主内存与计算节点分离开来。OCM 基于微环谐振器 (MRR),无需对 DRAM 内存模块进行任何修改。我们计算了实际光子设备的能耗,并将其集成到系统模拟器中以评估性能。我们的结果表明:(1) OCM 能够使用两根光纤将四个 DDR4 内存通道互连到计算节点,每比特能耗为 1.07 pJ;(2) OCM 的性能比使用 40G PCIe NIC 连接器的分解内存快 5.5 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analyzing the Loop Scheduling Mechanisms on Julia Multithreading Reliable and Energy-aware Mapping of Streaming Series-parallel Applications onto Hierarchical Platforms High-Performance Low-Memory Lowering: GEMM-based Algorithms for DNN Convolution Energy-Efficient Time Series Analysis Using Transprecision Computing On-chip Parallel Photonic Reservoir Computing using Multiple Delay Lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1