Real-time prediction of meme burst

Jie Bai, Linjing Li, Lan Lu, Yanwu Yang, D. Zeng
{"title":"Real-time prediction of meme burst","authors":"Jie Bai, Linjing Li, Lan Lu, Yanwu Yang, D. Zeng","doi":"10.1109/ISI.2017.8004900","DOIUrl":null,"url":null,"abstract":"Predicting meme burst is of great relevance to develop security-related detecting and early warning capabilities. In this paper, we propose a feature-based method for real-time meme burst predictions, namely “Semantic, Network, and Time” (SNAT). By considering the potential characteristics of bursty memes, such as the semantics and spatio-temporal characteristics during their propagation, SNAT is capable of capturing meme burst at the very beginning and in real time. Experimental results prove the effectiveness of SNAT in terms of both fixed-time and real-time meme burst prediction tasks.","PeriodicalId":423696,"journal":{"name":"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2017.8004900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Predicting meme burst is of great relevance to develop security-related detecting and early warning capabilities. In this paper, we propose a feature-based method for real-time meme burst predictions, namely “Semantic, Network, and Time” (SNAT). By considering the potential characteristics of bursty memes, such as the semantics and spatio-temporal characteristics during their propagation, SNAT is capable of capturing meme burst at the very beginning and in real time. Experimental results prove the effectiveness of SNAT in terms of both fixed-time and real-time meme burst prediction tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模因爆发的实时预测
预测模因爆发对于发展安全相关的检测和预警能力具有重要意义。在本文中,我们提出了一种基于特征的实时模因爆发预测方法,即“语义、网络和时间”(SNAT)。SNAT通过考虑突发模因在传播过程中的语义特征和时空特征等潜在特征,能够在最开始和实时地捕捉到突发模因。实验结果证明了SNAT在固定时间和实时模因爆发预测任务中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The dynamics of health sentiments with competitive interactions in social media Phishing detection: A recent intelligent machine learning comparison based on models content and features A framework for digital forensics analysis based on semantic role labeling Alignment-free indexing-first-one hashing with bloom filter integration Assessing medical device vulnerabilities on the Internet of Things
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1