Searching the Adversarial Example in the Decision Boundary

Haoyang Jiang, Qingkui Song, J. Kernec
{"title":"Searching the Adversarial Example in the Decision Boundary","authors":"Haoyang Jiang, Qingkui Song, J. Kernec","doi":"10.1109/UCET51115.2020.9205320","DOIUrl":null,"url":null,"abstract":"Deep learning technology achieves state of the art result in many computer vision missions. However, some researchers point out that current widely used deep learning architectures are vulnerable to adversarial examples. Adversarial examples are inputs generated by applying small and often imperceptible perturbation to examples in the dataset, such that the perturbed examples can degrade the performance of the deep learning architecture.In the paper, we propose a novel adversarial examples generation method. Adversarial examples generated using this method can have small perturbation and have more diversity compare to adversarial examples generated by other method.","PeriodicalId":163493,"journal":{"name":"2020 International Conference on UK-China Emerging Technologies (UCET)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on UK-China Emerging Technologies (UCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCET51115.2020.9205320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Deep learning technology achieves state of the art result in many computer vision missions. However, some researchers point out that current widely used deep learning architectures are vulnerable to adversarial examples. Adversarial examples are inputs generated by applying small and often imperceptible perturbation to examples in the dataset, such that the perturbed examples can degrade the performance of the deep learning architecture.In the paper, we propose a novel adversarial examples generation method. Adversarial examples generated using this method can have small perturbation and have more diversity compare to adversarial examples generated by other method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
决策边界中对抗性例子的搜索
深度学习技术在许多计算机视觉任务中实现了最先进的结果。然而,一些研究人员指出,目前广泛使用的深度学习架构很容易受到对抗性示例的影响。对抗性示例是通过对数据集中的示例应用微小且通常难以察觉的扰动而生成的输入,这样被扰动的示例可以降低深度学习架构的性能。本文提出了一种新的对抗样例生成方法。与其他方法生成的对抗样例相比,该方法生成的对抗样例具有较小的扰动和更大的多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart Wristband for Gesture Recognition Foldable, Eco-Friendly and Low-Cost Microfluidic Paper-Based Capacitive Droplet Sensor A Wearable Health Monitoring System A Novel Approach for Classifying Diabetes’ Patients Based on Imputation and Machine Learning Towards Holographic Beam-Forming Metasurface Technology for Next Generation CubeSats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1