Histogram of oriented velocities for eye movement detection

Wolfgang Fuhl, Nora Castner, Enkelejda Kasneci
{"title":"Histogram of oriented velocities for eye movement detection","authors":"Wolfgang Fuhl, Nora Castner, Enkelejda Kasneci","doi":"10.1145/3279810.3279843","DOIUrl":null,"url":null,"abstract":"Research in various fields including psychology, cognition, and medical science deal with eye tracking data to extract information about the intention and cognitive state of a subject. For the extraction of this information, the detection of eye movement types is an important task. Modern eye tracking data is noisy and most of the state-of-the-art algorithms are not developed for all types of eye movements since they are still under research. We propose a novel feature for eye movement detection, which is called histogram of oriented velocities. The construction of the feature is similar to the well known histogram of oriented gradients from computer vision. Since the detector is trained using machine learning, it can always be extended to new eye movement types. We evaluate our feature against the state-of-the-art on publicly available data. The evaluation includes different machine learning approaches such as support vector machines, regression trees, and k nearest neighbors. We evaluate our feature together with the machine learning approaches for different parameter sets. We provide a matlab script for the computation and evaluation as well as an integration in EyeTrace which can be downloaded at http://www.ti.uni-tuebingen.de/Eyetrace.1751.0.html.","PeriodicalId":326513,"journal":{"name":"Proceedings of the Workshop on Modeling Cognitive Processes from Multimodal Data","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Modeling Cognitive Processes from Multimodal Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3279810.3279843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Research in various fields including psychology, cognition, and medical science deal with eye tracking data to extract information about the intention and cognitive state of a subject. For the extraction of this information, the detection of eye movement types is an important task. Modern eye tracking data is noisy and most of the state-of-the-art algorithms are not developed for all types of eye movements since they are still under research. We propose a novel feature for eye movement detection, which is called histogram of oriented velocities. The construction of the feature is similar to the well known histogram of oriented gradients from computer vision. Since the detector is trained using machine learning, it can always be extended to new eye movement types. We evaluate our feature against the state-of-the-art on publicly available data. The evaluation includes different machine learning approaches such as support vector machines, regression trees, and k nearest neighbors. We evaluate our feature together with the machine learning approaches for different parameter sets. We provide a matlab script for the computation and evaluation as well as an integration in EyeTrace which can be downloaded at http://www.ti.uni-tuebingen.de/Eyetrace.1751.0.html.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
眼动检测的方向速度直方图
包括心理学、认知学和医学在内的各个领域的研究都涉及眼动追踪数据,以提取有关受试者意图和认知状态的信息。对于这些信息的提取,眼动类型的检测是一个重要的任务。现代眼动追踪数据是嘈杂的,大多数最先进的算法还没有开发出所有类型的眼动,因为它们仍在研究中。我们提出了一种新的眼动检测特征,称为方向速度直方图。特征的构造类似于计算机视觉中众所周知的定向梯度直方图。由于检测器是使用机器学习进行训练的,因此它总是可以扩展到新的眼动类型。我们根据最先进的公开数据来评估我们的功能。评估包括不同的机器学习方法,如支持向量机、回归树和k近邻。我们对不同参数集的特征与机器学习方法一起进行评估。我们提供了一个用于计算和评估的matlab脚本,以及在EyeTrace中的集成,可以从http://www.ti.uni-tuebingen.de/Eyetrace.1751.0.html下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rule-based learning for eye movement type detection Predicting group satisfaction in meeting discussions Multimodal approach for cognitive task performance prediction from body postures, facial expressions and EEG signal The role of emotion in problem solving: first results from observing chess Proceedings of the Workshop on Modeling Cognitive Processes from Multimodal Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1