Binding Hardware IPs to Specific FPGA Device via Inter-twining the PUF Response with the FSM of Sequential Circuits

Jiliang Zhang, Yaping Lin, Yongqiang Lyu, R. Cheung, Wenjie Che, Qiang Zhou, Jinian Bian
{"title":"Binding Hardware IPs to Specific FPGA Device via Inter-twining the PUF Response with the FSM of Sequential Circuits","authors":"Jiliang Zhang, Yaping Lin, Yongqiang Lyu, R. Cheung, Wenjie Che, Qiang Zhou, Jinian Bian","doi":"10.1109/FCCM.2013.12","DOIUrl":null,"url":null,"abstract":"The continuous growth in both capability and capacity for FPGA now requires significant resources invested in the hardware design, which results in two classes of main security issues: 1) the unauthorized use and piracy attacks including cloning, reverse engineering, tampering etc. 2) the licensing issue. Binding hardware IPs (HW-IPs) to specific FPGA devices can efficiently resolve these problems. However, previous binding techniques are all based on encryption and hence have three main drawbacks: 1) encryption-based proposals in commercial are limited to protect the single large FPGA configuration, 2) many encryption-based proposals depend on a trusted third party to involve the licensing protocol, and 3) the encryption-based binding methods use costly mechanisms such as secure ROM or flash memory to store FPGA specific cryptographic keys, which is not only expensive but also vulnerable to side-channel attacks, and the management and transport of secret keys became a practical issue. In this work, we propose a PUF-FSM binding technique completely different from the traditional encryption-based methods to address these shortcomings.","PeriodicalId":269887,"journal":{"name":"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2013.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The continuous growth in both capability and capacity for FPGA now requires significant resources invested in the hardware design, which results in two classes of main security issues: 1) the unauthorized use and piracy attacks including cloning, reverse engineering, tampering etc. 2) the licensing issue. Binding hardware IPs (HW-IPs) to specific FPGA devices can efficiently resolve these problems. However, previous binding techniques are all based on encryption and hence have three main drawbacks: 1) encryption-based proposals in commercial are limited to protect the single large FPGA configuration, 2) many encryption-based proposals depend on a trusted third party to involve the licensing protocol, and 3) the encryption-based binding methods use costly mechanisms such as secure ROM or flash memory to store FPGA specific cryptographic keys, which is not only expensive but also vulnerable to side-channel attacks, and the management and transport of secret keys became a practical issue. In this work, we propose a PUF-FSM binding technique completely different from the traditional encryption-based methods to address these shortcomings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过将PUF响应与顺序电路的FSM交织,将硬件ip绑定到特定的FPGA设备
FPGA的性能和容量的持续增长现在需要在硬件设计上投入大量资源,这导致了两类主要的安全问题:1)未经授权的使用和盗版攻击,包括克隆,逆向工程,篡改等;2)许可问题。将硬件ip (hw - ip)绑定到特定的FPGA设备可以有效地解决这些问题。然而,以前的绑定技术都是基于加密的,因此有三个主要缺点:1)加密方案在商业仅限于保护单一大型FPGA配置,2)许多加密方案依赖可信第三方涉及的许可协议,和3)加密绑定方法使用昂贵的机制如安全ROM或闪存存储FPGA具体的密钥,这是不仅昂贵而且容易边信道攻击,和密钥的管理和运输成为一个实际问题。在这项工作中,我们提出了一种完全不同于传统的基于加密的方法的PUF-FSM绑定技术来解决这些缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Escaping the Academic Sandbox: Realizing VPR Circuits on Xilinx Devices Exploiting Input Parameter Uncertainty for Reducing Datapath Precision of SPICE Device Models Accurate Thermal-Profile Estimation and Validation for FPGA-Mapped Circuits Boosting Memory Performance of Many-Core FPGA Device through Dynamic Precedence Graph A Fast and Accurate FPGA-Based Fault Injection System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1