Designing plasmonic nanoparticle lattices for directional, in-plane lasing

J. Guan, Marc R. Bourgeois, Ran Li, Jingtian Hu, R. Schaller, G. Schatz, T. Odom
{"title":"Designing plasmonic nanoparticle lattices for directional, in-plane lasing","authors":"J. Guan, Marc R. Bourgeois, Ran Li, Jingtian Hu, R. Schaller, G. Schatz, T. Odom","doi":"10.1117/12.2594760","DOIUrl":null,"url":null,"abstract":"Band structures engineering of periodic optical structures enables the control of light propagation and localization. Although photons trapped inside 2D lattices can be described within the first Brillouin zone in reciprocal space, the wavevectors of scattered photons outside the lattice are limited by the 3D light cone, which depicts the free-photon dispersion in the surroundings. Because plasmonic nanoparticle lattices show unique dual properties of light trapping and strong scattering, this material platform is promising for investigations of radiative losses. This talk describes how light-cone surface lattice resonance (SLRs) from plasmonic nanoparticle lattices allow the observation of radiated electromagnetic fields. We theoretically predicted the angular distributions of the radiated fields, and experimentally probed the light-cone SLR modes by in-plane lasing emission. These results provide a nanolaser design strategy to achieve tunable lasing colors by lattice rotation.","PeriodicalId":118068,"journal":{"name":"Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XIX","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XIX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2594760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Band structures engineering of periodic optical structures enables the control of light propagation and localization. Although photons trapped inside 2D lattices can be described within the first Brillouin zone in reciprocal space, the wavevectors of scattered photons outside the lattice are limited by the 3D light cone, which depicts the free-photon dispersion in the surroundings. Because plasmonic nanoparticle lattices show unique dual properties of light trapping and strong scattering, this material platform is promising for investigations of radiative losses. This talk describes how light-cone surface lattice resonance (SLRs) from plasmonic nanoparticle lattices allow the observation of radiated electromagnetic fields. We theoretically predicted the angular distributions of the radiated fields, and experimentally probed the light-cone SLR modes by in-plane lasing emission. These results provide a nanolaser design strategy to achieve tunable lasing colors by lattice rotation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计用于定向平面内激光的等离子体纳米粒子晶格
周期光学结构的能带结构工程使光的传播和定位控制成为可能。虽然被困在二维晶格内的光子可以在倒易空间的第一布里频区内描述,但晶格外散射光子的波向量受到三维光锥的限制,这描述了周围环境中的自由光子色散。由于等离子体纳米粒子晶格具有独特的光捕获和强散射的双重特性,因此该材料平台有望用于辐射损耗的研究。本次演讲描述了等离子体纳米粒子晶格的光锥表面晶格共振(slr)如何允许观测辐射电磁场。我们从理论上预测了辐射场的角分布,并通过面内激光发射实验探测了光锥单反模式。这些结果提供了一种通过晶格旋转实现可调激光颜色的纳米激光器设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Front Matter: Volume 11797 Mark Stockman Tribute Enhancement of optical nonlinearity and spontaneous emission in nano-engineered epsilon-near-zero materials Plasmonic metaplatforms for enhanced light control Excitonic semiconductors on plasmonic substrates: optical and electronic effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1