Low-rate, flow-level periodicity detection

G. Bartlett, J. Heidemann, C. Papadopoulos
{"title":"Low-rate, flow-level periodicity detection","authors":"G. Bartlett, J. Heidemann, C. Papadopoulos","doi":"10.1109/INFCOMW.2011.5928922","DOIUrl":null,"url":null,"abstract":"As desktops and servers become more complicated, they employ an increasing amount of automatic, non-user initiated communication. Such communication can be good (OS updates, RSS feed readers, and mail polling), bad (keyloggers, spyware, and botnet command-and-control), or ugly (adware or unauthorized peer-to-peer applications). Communication in these applications is often regular, but with very long periods, ranging from minutes to hours. This infrequent communication and the complexity of today's systems makes these applications difficult for users to detect and diagnose. In this paper we present a new approach to identify low-rate periodic network traffic and changes in such regular communication. We employ signal-processing techniques, using discrete wavelets implemented as a fully decomposed, iterated filter bank. This approach not only detects low-rate periodicities, but also identifies approximate times when traffic changed. We implement a self-surveillance application that externally identifies changes to a user's machine, such as interruption of periodic software updates, or an installation of a keylogger.","PeriodicalId":402219,"journal":{"name":"2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOMW.2011.5928922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

As desktops and servers become more complicated, they employ an increasing amount of automatic, non-user initiated communication. Such communication can be good (OS updates, RSS feed readers, and mail polling), bad (keyloggers, spyware, and botnet command-and-control), or ugly (adware or unauthorized peer-to-peer applications). Communication in these applications is often regular, but with very long periods, ranging from minutes to hours. This infrequent communication and the complexity of today's systems makes these applications difficult for users to detect and diagnose. In this paper we present a new approach to identify low-rate periodic network traffic and changes in such regular communication. We employ signal-processing techniques, using discrete wavelets implemented as a fully decomposed, iterated filter bank. This approach not only detects low-rate periodicities, but also identifies approximate times when traffic changed. We implement a self-surveillance application that externally identifies changes to a user's machine, such as interruption of periodic software updates, or an installation of a keylogger.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低速率,流量级周期性检测
随着桌面和服务器变得越来越复杂,它们使用越来越多的自动、非用户发起的通信。这种通信可以是好的(操作系统更新、RSS提要阅读器和邮件轮询),也可以是坏的(键盘记录程序、间谍软件和僵尸网络的命令和控制),也可以是难看的(广告软件或未经授权的点对点应用程序)。这些应用程序中的通信通常是有规律的,但周期很长,从几分钟到几小时不等。这种不频繁的通信和当今系统的复杂性使得用户难以检测和诊断这些应用程序。在本文中,我们提出了一种新的方法来识别低速率的周期性网络流量和这种定期通信的变化。我们采用信号处理技术,将离散小波实现为完全分解的迭代滤波器组。这种方法不仅可以检测到低频率的周期性,还可以识别流量变化的近似时间。我们实现了一个自我监视应用程序,该应用程序从外部识别对用户计算机的更改,例如定期软件更新的中断,或键盘记录器的安装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A robust controller of dynamic networks and its verification by the simulation of the heat shock response network with reliable signal transmission An energy-aware distributed approach for content and network management Lightweight privacy-preserving routing and incentive protocol for hybrid ad hoc wireless network Cooperative spectrum sensing in TV White Spaces: When Cognitive Radio meets Cloud A Reservation-based Smart Parking System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1