Modeling Socio-Emotional and Cognitive Processes from Multimodal Data in the Wild

Dennis Küster, F. Putze, Patrícia Alves-Oliveira, Maike Paetzel, T. Schultz
{"title":"Modeling Socio-Emotional and Cognitive Processes from Multimodal Data in the Wild","authors":"Dennis Küster, F. Putze, Patrícia Alves-Oliveira, Maike Paetzel, T. Schultz","doi":"10.1145/3382507.3420053","DOIUrl":null,"url":null,"abstract":"Detecting, modeling, and making sense of multimodal data from human users in the wild still poses numerous challenges. Starting from aspects of data quality and reliability of our measurement instruments, the multidisciplinary endeavor of developing intelligent adaptive systems in human-computer or human-robot interaction (HCI, HRI) requires a broad range of expertise and more integrative efforts to make such systems reliable, engaging, and user-friendly. At the same time, the spectrum of applications for machine learning and modeling of multimodal data in the wild keeps expanding. From the classroom to the robot-assisted operation theatre, our workshop aims to support a vibrant exchange about current trends and methods in the field of modeling multimodal data in the wild.","PeriodicalId":402394,"journal":{"name":"Proceedings of the 2020 International Conference on Multimodal Interaction","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3382507.3420053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Detecting, modeling, and making sense of multimodal data from human users in the wild still poses numerous challenges. Starting from aspects of data quality and reliability of our measurement instruments, the multidisciplinary endeavor of developing intelligent adaptive systems in human-computer or human-robot interaction (HCI, HRI) requires a broad range of expertise and more integrative efforts to make such systems reliable, engaging, and user-friendly. At the same time, the spectrum of applications for machine learning and modeling of multimodal data in the wild keeps expanding. From the classroom to the robot-assisted operation theatre, our workshop aims to support a vibrant exchange about current trends and methods in the field of modeling multimodal data in the wild.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从野外多模态数据建模社会情绪和认知过程
在野外检测、建模和理解来自人类用户的多模态数据仍然面临许多挑战。从我们的测量仪器的数据质量和可靠性方面开始,开发人机或人机交互(HCI, HRI)的智能自适应系统的多学科努力需要广泛的专业知识和更综合的努力,以使这些系统可靠,引人入胜和用户友好。与此同时,机器学习和野外多模态数据建模的应用范围不断扩大。从教室到机器人辅助手术室,我们的研讨会旨在支持关于野外多模态数据建模领域的当前趋势和方法的活跃交流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OpenSense: A Platform for Multimodal Data Acquisition and Behavior Perception Human-centered Multimodal Machine Intelligence Touch Recognition with Attentive End-to-End Model MORSE: MultimOdal sentiment analysis for Real-life SEttings Temporal Attention and Consistency Measuring for Video Question Answering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1