An LSTM-based Traffic Prediction Algorithm with Attention Mechanism for Satellite Network

Feiyu Zhu, Lixiang Liu, Teng Lin
{"title":"An LSTM-based Traffic Prediction Algorithm with Attention Mechanism for Satellite Network","authors":"Feiyu Zhu, Lixiang Liu, Teng Lin","doi":"10.1145/3430199.3430208","DOIUrl":null,"url":null,"abstract":"Due to the response to the topological time-varying of satellite network, the satellite management system puts forward higher requirements for the network traffic prediction algorithm. The traffic prediction algorithm of ground network is not suitable for satellite network. In this manuscript, a neural network model of long and short-term memory with attention mechanism is proposed. Considering that the input and output of traffic prediction is a sequence, the long short-term Memory (LSTM) model in this manuscript balances the effects of different parts of input on output by adding attention mechanism. The simulation results show that compared with ARIMA, random forest and traditional Recurrent Neural Network (RNN), the prediction accuracy of this model is significantly improved. Meanwhile, compared with the model after removing the attention network, the model verifies the effectiveness of the attention network.","PeriodicalId":371055,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3430199.3430208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Due to the response to the topological time-varying of satellite network, the satellite management system puts forward higher requirements for the network traffic prediction algorithm. The traffic prediction algorithm of ground network is not suitable for satellite network. In this manuscript, a neural network model of long and short-term memory with attention mechanism is proposed. Considering that the input and output of traffic prediction is a sequence, the long short-term Memory (LSTM) model in this manuscript balances the effects of different parts of input on output by adding attention mechanism. The simulation results show that compared with ARIMA, random forest and traditional Recurrent Neural Network (RNN), the prediction accuracy of this model is significantly improved. Meanwhile, compared with the model after removing the attention network, the model verifies the effectiveness of the attention network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于lstm的卫星网络注意机制流量预测算法
由于卫星网络的拓扑时变特性,卫星管理系统对网络流量预测算法提出了更高的要求。地面通信网的流量预测算法不适合卫星通信网。本文提出了一种具有注意机制的长短期记忆神经网络模型。考虑到交通预测的输入和输出是一个序列,本文的长短期记忆(LSTM)模型通过增加注意机制来平衡输入不同部分对输出的影响。仿真结果表明,与ARIMA、随机森林和传统的递归神经网络(RNN)相比,该模型的预测精度有明显提高。同时,与去掉注意网络后的模型进行比较,验证了注意网络的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D Modeling of Riverbeds Based on NURBS Algorithm Multi-view Learning for 3D LGE-MRI Left Atrial Cavity Segmentation Detection of Key Structure of Auroral Images Based on Weakly Supervised Learning People Counting Based on Multi-scale Region Adaptive Segmentation and Depth Neural Network A Survey of Research on Image Data Sources Forensics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1