A programming framework for integrating web-based spatiotemporal sensor data with MapReduce capabilities

James L. Horey
{"title":"A programming framework for integrating web-based spatiotemporal sensor data with MapReduce capabilities","authors":"James L. Horey","doi":"10.1145/1878500.1878511","DOIUrl":null,"url":null,"abstract":"Web-based sensor data, provided by organizations such as the National Oceanographic and Atmospheric Administration, provide a valuable service to the public and scientific communities. However, much of this data is locked in a variety of presentation formats and is computationally inaccessible. In addition, although these data have a spatiotemporal context, both the spatial and temporal data are usually only implicitly defined. Although storing this data in a consistent database can partially resolve this problem, a data-driven programming model coupled with MapReduce capabilities is a more flexible and extensible solution. Our implementation of this programming model allows users to parse a wide array of sensor data and express complex computation in a simple, scalable manner. In addition, our framework uses a simple key-value storage mechanism and provides convenient geospatial output mechanisms. In this paper, we discuss some early results of our programming model within the context of our current Java-oriented implementation, and demonstrate how the system can be used to create many different applications. We also discuss and evaluate our system with respect to memory usage and scalability.","PeriodicalId":190366,"journal":{"name":"International Workshop on GeoStreaming","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on GeoStreaming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1878500.1878511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Web-based sensor data, provided by organizations such as the National Oceanographic and Atmospheric Administration, provide a valuable service to the public and scientific communities. However, much of this data is locked in a variety of presentation formats and is computationally inaccessible. In addition, although these data have a spatiotemporal context, both the spatial and temporal data are usually only implicitly defined. Although storing this data in a consistent database can partially resolve this problem, a data-driven programming model coupled with MapReduce capabilities is a more flexible and extensible solution. Our implementation of this programming model allows users to parse a wide array of sensor data and express complex computation in a simple, scalable manner. In addition, our framework uses a simple key-value storage mechanism and provides convenient geospatial output mechanisms. In this paper, we discuss some early results of our programming model within the context of our current Java-oriented implementation, and demonstrate how the system can be used to create many different applications. We also discuss and evaluate our system with respect to memory usage and scalability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集成基于web的时空传感器数据与MapReduce功能的编程框架
由美国国家海洋和大气管理局等组织提供的基于网络的传感器数据为公众和科学界提供了宝贵的服务。然而,这些数据中的大部分被锁定在各种表示格式中,并且在计算上无法访问。此外,尽管这些数据具有时空背景,但空间和时间数据通常只是隐式定义的。虽然将这些数据存储在一致的数据库中可以部分地解决这个问题,但数据驱动的编程模型与MapReduce功能相结合是一个更灵活和可扩展的解决方案。我们对这个编程模型的实现允许用户解析大量传感器数据,并以简单、可扩展的方式表达复杂的计算。此外,我们的框架使用简单的键值存储机制,并提供方便的地理空间输出机制。在本文中,我们将在当前面向java的实现上下文中讨论我们的编程模型的一些早期结果,并演示如何使用该系统创建许多不同的应用程序。我们还从内存使用和可伸缩性方面讨论和评估我们的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clustering spatial data streams for targeted alerting in disaster response ADTOS: arrival departure tradeoff optimization system Mining robust neighborhoods for quality control of sensor data EHSTC: an enhanced method for semantic trajectory compression Towards window stream queries over continuous phenomena
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1