A Chinese Efficient Analyser Integrating Word Segmentation, Part-Of-Speech Tagging, Partial Parsing and Full Parsing

Guodong Zhou, Jian Su
{"title":"A Chinese Efficient Analyser Integrating Word Segmentation, Part-Of-Speech Tagging, Partial Parsing and Full Parsing","authors":"Guodong Zhou, Jian Su","doi":"10.3115/1119250.1119261","DOIUrl":null,"url":null,"abstract":"This paper introduces an efficient analyser for the Chinese language, which efficiently and effectively integrates word segmentation, part-of-speech tagging, partial parsing and full parsing. The Chinese efficient analyser is based on a Hidden Markov Model (HMM) and an HMM-based tagger. That is, all the components are based on the same HMM-based tagging engine. One advantage of using the same single engine is that it largely decreases the code size and makes the maintenance easy. Another advantage is that it is easy to optimise the code and thus improve the speed while speed plays a critical important role in many applications. Finally, the performances of all the components can benefit from the optimisation of existing algorithms and/or adoption of better algorithms to a single engine. Experiments show that all the components can achieve state-of-art performances with high efficiency for the Chinese language.","PeriodicalId":403123,"journal":{"name":"Workshop on Chinese Language Processing","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Chinese Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1119250.1119261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper introduces an efficient analyser for the Chinese language, which efficiently and effectively integrates word segmentation, part-of-speech tagging, partial parsing and full parsing. The Chinese efficient analyser is based on a Hidden Markov Model (HMM) and an HMM-based tagger. That is, all the components are based on the same HMM-based tagging engine. One advantage of using the same single engine is that it largely decreases the code size and makes the maintenance easy. Another advantage is that it is easy to optimise the code and thus improve the speed while speed plays a critical important role in many applications. Finally, the performances of all the components can benefit from the optimisation of existing algorithms and/or adoption of better algorithms to a single engine. Experiments show that all the components can achieve state-of-art performances with high efficiency for the Chinese language.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种集分词、词性标注、部分句法分析和完全句法分析于一体的汉语高效句法分析器
本文介绍了一种高效的汉语句法分析器,它将分词、词性标注、部分句法分析和全部句法分析高效地集成在一起。中国高效分析器是基于隐马尔可夫模型(HMM)和基于HMM的标注器。也就是说,所有组件都基于相同的基于hmm的标记引擎。使用相同的单个引擎的一个优点是,它在很大程度上减少了代码大小,使维护变得容易。另一个优点是,它很容易优化代码,从而提高速度,而速度在许多应用程序中起着至关重要的作用。最后,所有组件的性能都可以从现有算法的优化和/或对单个引擎采用更好的算法中受益。实验结果表明,所有组件都能达到汉语语言的最高性能和高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building a Large Chinese Corpus Annotated with Semantic Dependency A Two-stage Statistical Word Segmentation System for Chinese Unsupervised Training for Overlapping Ambiguity Resolution in Chinese Word Segmentation Chinese Word Segmentation in MSR-NLP Annotating the Propositions in the Penn Chinese Treebank
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1