Interaction of an intense relativistic electron beam with a plasma-filled waveguide in a magnetic field

B. Poole, B. Chang, J. F. Camacho
{"title":"Interaction of an intense relativistic electron beam with a plasma-filled waveguide in a magnetic field","authors":"B. Poole, B. Chang, J. F. Camacho","doi":"10.1109/PLASMA.1989.166236","DOIUrl":null,"url":null,"abstract":"Analytic computations and particle-in-cell (PIC) code simulations for the interaction of an intense relativistic electron beam (REB) and a plasma have been carried out. In the simulations, a fast risetime ( approximately 5 ns) 10-kA REB (1 MeV) was injected into a plasma-filled waveguide immersed in an axial magnetic field. Beam transport and microwave generation by beam-plasma instabilities were investigated in both the infinite- and finite-B-field cases. In the finite-B-field case, both the two-stream and cyclotron instabilities were important. Calculations of charge and current neutralization of the REB were performed in the intense beam regime. These calculations provided the appropriate parameters for the linear dispersion relation of the system, which was solved to determine the nature of the instabilities. For large magnetic fields the linearly unstable waves on the lower branch of the dispersion curve can backscatter off the accumulation of plasma electrons at the beam front produced in the charge neutralization process. These backscattered waves can then mix with the original unstable wave in a three-wave process to produce a wave on the upper branch of the dispersion curve at a higher-frequency. Still higher frequencies can be produced by a cascading of wave-mixing processes.<<ETX>>","PeriodicalId":165717,"journal":{"name":"IEEE 1989 International Conference on Plasma Science","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 1989 International Conference on Plasma Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.1989.166236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Analytic computations and particle-in-cell (PIC) code simulations for the interaction of an intense relativistic electron beam (REB) and a plasma have been carried out. In the simulations, a fast risetime ( approximately 5 ns) 10-kA REB (1 MeV) was injected into a plasma-filled waveguide immersed in an axial magnetic field. Beam transport and microwave generation by beam-plasma instabilities were investigated in both the infinite- and finite-B-field cases. In the finite-B-field case, both the two-stream and cyclotron instabilities were important. Calculations of charge and current neutralization of the REB were performed in the intense beam regime. These calculations provided the appropriate parameters for the linear dispersion relation of the system, which was solved to determine the nature of the instabilities. For large magnetic fields the linearly unstable waves on the lower branch of the dispersion curve can backscatter off the accumulation of plasma electrons at the beam front produced in the charge neutralization process. These backscattered waves can then mix with the original unstable wave in a three-wave process to produce a wave on the upper branch of the dispersion curve at a higher-frequency. Still higher frequencies can be produced by a cascading of wave-mixing processes.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁场中强相对论电子束与等离子体填充波导的相互作用
本文对强相对论电子束(REB)与等离子体相互作用进行了解析计算和粒子池(PIC)代码模拟。在模拟中,将快速上升时间约为5 ns的10-kA REB (1 MeV)注入浸入轴向磁场中的等离子体填充波导中。在无限和有限b场情况下,研究了束流等离子体不稳定性引起的束流输运和微波产生。在有限b场的情况下,双流和回旋加速器的不稳定性都很重要。计算了强束流条件下REB的电荷和电流中和作用。这些计算为系统的线性色散关系提供了合适的参数,并对其进行求解以确定不稳定性的性质。在大磁场下,色散曲线下支的线性不稳定波可以反向散射电荷中和过程中产生的束前等离子体电子积累。然后,这些反向散射波可以在三波过程中与原始不稳定波混合,在色散曲线的上分支上产生频率更高的波。通过级联的波混合过程还可以产生更高的频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.10
自引率
0.00%
发文量
0
期刊最新文献
Magnetic field effects in electrostatic analyzers used for heavy ion beam probe measurements In-vessel maintenance on the IGNITEX experiment High field, single turn toroidal magnetic technology demonstration for IGNITEX Operation of the IGNITEX tokamak Temperature measurements on RFP and ULQ experiments in REPUTE-1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1