Inferring social influence and meme interaction with Hawkes processes

Chuan Luo, Xiaolong Zheng, D. Zeng
{"title":"Inferring social influence and meme interaction with Hawkes processes","authors":"Chuan Luo, Xiaolong Zheng, D. Zeng","doi":"10.1109/ISI.2015.7165953","DOIUrl":null,"url":null,"abstract":"Revealing underlying social influence among users in social media is critical to understanding how users interact, on which a lot of security intelligence applications can be built. Existing methods fail to take into account the interaction relationships among memes. In this paper, we propose to simultaneously model social influence and meme interaction in information diffusion with novel multidimensional Hawkes processes. Experimental results on both synthetic and real world social media data show the efficacy of the proposed approach.","PeriodicalId":292352,"journal":{"name":"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2015.7165953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Revealing underlying social influence among users in social media is critical to understanding how users interact, on which a lot of security intelligence applications can be built. Existing methods fail to take into account the interaction relationships among memes. In this paper, we propose to simultaneously model social influence and meme interaction in information diffusion with novel multidimensional Hawkes processes. Experimental results on both synthetic and real world social media data show the efficacy of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用霍克斯过程推断社会影响和模因交互作用
揭示社交媒体中用户潜在的社会影响对于理解用户如何互动至关重要,而许多安全智能应用程序都可以在此基础上构建。现有的方法没有考虑到模因之间的交互关系。本文提出了一种新的多维Hawkes过程模型来同时模拟信息传播中的社会影响和模因交互作用。在合成和真实世界社交媒体数据上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling emotion entrainment of online users in emergency events Exploring the effect of permission notice on users' initial trust to an application store: The case of China's Android application market Multi-objective evolutionary algorithms and multiagent models for optimizing police dispatch Personality based public sentiment classification in microblog Social sensor analytics: Making sense of network models in social media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1