{"title":"An analysis of network traffic classification for botnet detection","authors":"Matija Stevanovic, J. Pedersen","doi":"10.1109/CYBERSA.2015.7361120","DOIUrl":null,"url":null,"abstract":"Botnets represent one of the most serious threats to the Internet security today. This paper explores how network traffic classification can be used for accurate and efficient identification of botnet network activity at local and enterprise networks. The paper examines the effectiveness of detecting botnet network traffic using three methods that target protocols widely considered as the main carriers of botnet Command and Control (C&C) and attack traffic, i.e. TCP, UDP and DNS. We propose three traffic classification methods based on capable Random Forests classifier. The proposed methods have been evaluated through the series of experiments using traffic traces originating from 40 different bot samples and diverse non-malicious applications. The evaluation indicates accurate and time-efficient classification of botnet traffic for all three protocols. The future work will be devoted to the optimization of traffic analysis and the correlation of findings from the three analysis methods in order to identify compromised hosts within the network.","PeriodicalId":432356,"journal":{"name":"2015 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERSA.2015.7361120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45
Abstract
Botnets represent one of the most serious threats to the Internet security today. This paper explores how network traffic classification can be used for accurate and efficient identification of botnet network activity at local and enterprise networks. The paper examines the effectiveness of detecting botnet network traffic using three methods that target protocols widely considered as the main carriers of botnet Command and Control (C&C) and attack traffic, i.e. TCP, UDP and DNS. We propose three traffic classification methods based on capable Random Forests classifier. The proposed methods have been evaluated through the series of experiments using traffic traces originating from 40 different bot samples and diverse non-malicious applications. The evaluation indicates accurate and time-efficient classification of botnet traffic for all three protocols. The future work will be devoted to the optimization of traffic analysis and the correlation of findings from the three analysis methods in order to identify compromised hosts within the network.